515 research outputs found
Residual Kondo effect in quantum dot coupled to half-metallic ferromagnets
We study the Kondo effect in a quantum dot coupled to half-metallic
ferromagnetic electrodes in the regime of strong on-dot correlations. Using the
equation of motion technique for nonequilibrium Green functions in the slave
boson representation we show that the Kondo effect is not completely suppressed
for anti-parallel leads magnetization. In the parallel configuration there is
no Kondo effect but there is an effect associated with elastic cotunneling
which in turn leads to similar behavior of the local (on-dot) density of states
(LDOS) as the usual Kondo effect. Namely, the LDOS shows the temperature
dependent resonance at the Fermi energy which splits with the bias voltage and
the magnetic field. Moreover, unlike for non-magnetic or not fully polarized
ferromagnetic leads the only minority spin electrons can form such resonance in
the density of states. However, this resonance cannot be observed directly in
the transport measurements and we give some clues how to identify the effect in
such systems.Comment: 15 pages, 8 figures, accepted for publication in J. Phys.: Condens.
Mat
Kondo quantum dot coupled to ferromagnetic leads: Numerical renormalization group study
We systematically study the influence of ferromagnetic leads on the Kondo
resonance in a quantum dot tuned to the local moment regime. We employ Wilson's
numerical renormalization group method, extended to handle leads with a spin
asymmetric density of states, to identify the effects of (i) a finite spin
polarization in the leads (at the Fermi-surface), (ii) a Stoner splitting in
the bands (governed by the band edges) and (iii) an arbitrary shape of the
leads density of states. For a generic lead density of states the quantum dot
favors being occupied by a particular spin-species due to exchange interaction
with ferromagnetic leads leading to a suppression and splitting of the Kondo
resonance. The application of a magnetic field can compensate this asymmetry
restoring the Kondo effect. We study both the gate-voltage dependence (for a
fixed band structure in the leads) and the spin polarization dependence (for
fixed gate voltage) of this compensation field for various types of bands.
Interestingly, we find that the full recovery of the Kondo resonance of a
quantum dot in presence of leads with an energy dependent density of states is
not only possible by an appropriately tuned external magnetic field but also
via an appropriately tuned gate voltage. For flat bands simple formulas for the
splitting of the local level as a function of the spin polarization and gate
voltage are given.Comment: 18 pages, 18 figures, accepted for publication in PR
Gate-controlled spin splitting in quantum dots with ferromagnetic leads in the Kondo regime
科研費報告書収録論文(課題番号:16340097/研究代表者:前川禎通/スピン及び軌道による量子伝導の制御理論)47
Crossover from Kondo assisted suppression to co-tunneling enhancement of tunneling magnetoresistance via ferromagnetic nanodots in MgO tunnel barriers
Recently, it has been shown that magnetic tunnel junctions with thin MgO
tunnel barriers exhibit extraordinarily high tunneling magnetoresistance (TMR)
values at room temperature1, 2. However, the physics of spin dependent
tunneling through MgO barriers is only beginning to be unravelled. Using planar
magnetic tunnel junctions in which ultra-thin layers of magnetic metals are
deposited in the middle of a MgO tunnel barrier here we demonstrate that the
TMR is strongly modified when these layers are discontinuous and composed of
small pancake shaped nanodots. At low temperatures, in the Coulomb blockade
regime, for layers less than ~1 nm thick, the conductance of the junction is
increased at low bias consistent with Kondo assisted tunneling. In the same
regime we observe a suppression of the TMR. For slightly thicker layers, and
correspondingly larger nanodots, the TMR is enhanced at low bias, consistent
with co-tunneling.Comment: Nano Letters (in press
Spintronic transport and Kondo effect in quantum dots
We investigate the spin-dependent transport properties of quantum-dot based
structures where Kondo correlations dominate the electronic dynamics. The
coupling to ferromagnetic leads with parallel magnetizations is known to give
rise to nontrivial effects in the local density of states of a single quantum
dot. We show that this influence strongly depends on whether charge
fluctuations are present or absent in the dot. This result is confirmed with
numerical renormalization group calculations and perturbation theory in the
on-site interaction. In the Fermi-liquid fixed point, we determine the
correlations of the electric current at zero temperature (shot noise) and
demonstrate that the Fano factor is suppressed below the Poissonian limit for
the symmetric point of the Anderson Hamiltonian even for nonzero lead
magnetizations. We discuss possible avenues of future research in this field:
coupling to the low energy excitations of the ferromagnets (magnons), extension
to double quantum dot systems with interdot antiferromagnetic interaction and
effect of spin-polarized currents on higher symmetry Kondo states such as
SU(4).Comment: 11 pages, 5 figures. Proceedings of the 3rd Intl. Conf. on Physics
and Applications of Spin-Related Phenomena in Semiconductors, Santa Barbara,
200
Magnetic Field Dependence of Macroscopic Quantum Tunneling and Coherence of Ferromagnetic Particle
We calculate the quantum tunneling rate of a ferromagnetic particle of diameter in a magnetic field of arbitrary angle. We consider the
magnetocrystalline anisotropy with the biaxial symmetry and that with the
tetragonal symmetry. Using the spin-coherent-state path integral, we obtain
approximate analytic formulas of the tunneling rates in the small -limit for the magnetic field normal to the easy axis (), for the field opposite to the initial easy axis (),
and for the field at an angle between these two orientations (). In addition, we obtain numerically the tunneling rates for
the biaxial symmetry in the full range of the angle of the magnetic
field (), for the values of \epsilon =0.01 and
0.001.Comment: 25 pages of text (RevTex) and 4 figures (PostScript files), to be
published in Phys. Rev.
Spintronic magnetic anisotropy
An attractive feature of magnetic adatoms and molecules for nanoscale
applications is their superparamagnetism, the preferred alignment of their spin
along an easy axis preventing undesired spin reversal. The underlying magnetic
anisotropy barrier --a quadrupolar energy splitting-- is internally generated
by spin-orbit interaction and can nowadays be probed by electronic transport.
Here we predict that in a much broader class of quantum-dot systems with spin
larger than one-half, superparamagnetism may arise without spin-orbit
interaction: by attaching ferromagnets a spintronic exchange field of
quadrupolar nature is generated locally. It can be observed in conductance
measurements and surprisingly leads to enhanced spin filtering even in a state
with zero average spin. Analogously to the spintronic dipolar exchange field,
responsible for a local spin torque, the effect is susceptible to electric
control and increases with tunnel coupling as well as with spin polarization.Comment: 6 pages with 4 figures + 26 pages of Supplementary Informatio
Spin-Polarized Transprot through Double Quantum Dots
We investigate spin-polarized transport phenomena through double quantum dots
coupled to ferromagnetic leads in series. By means of the slave-boson
mean-field approximation, we calculate the conductance in the Kondo regime for
two different configurations of the leads: spin-polarization of two
ferromagnetic leads is parallel or anti-parallel. It is found that transport
shows some remarkable properties depending on the tunneling strength between
two dots. These properties are explained in terms of the Kondo resonances in
the local density of states.Comment: 8 pages, 11 figure
- …