11 research outputs found

    Phenotypic Diversity of Lactobacillus casei Group Isolates as a Selection Criterion for Use as Secondary Adjunct Starters

    Get PDF
    Autochthonous lactic acid bacteria (LAB) play a key role in the development of cheese flavor. As the pasteurization treatment on raw milk causes the elimination of LAB, secondary starter cultures are used in cheese manufacture to obtain cheeses with improved and standardized flavors. In this work, strains of the L. casei group isolated from traditional Italian cheeses were screened for their phenotypic features of technological interest for use as secondary starters. Their milk acidifying performance and the production of volatile compounds when grown in milk were evaluated. Simultaneously, the acetoin metabolic pathway presence was screened in the strains and assessed for its transcriptional activation. The results showed that the analyzed strains, despite belonging to taxonomically-related species, vary greatly according to the measured phenotypes. Four strains among the fourteen screened could be potentially used as adjunct cultures for cheese-making processes. The strain that showed the highest production of acetoin upregulated the aspartate pathway. An increased knowledge of volatile compounds’ production and acidifying properties of LAB strains isolated from traditional dairy products might guide the selection of strains for industrial applications

    The microbiota of Mozzarella di Bufala Campana PDO cheese: a study across the manufacturing process

    Get PDF
    IntroductionMozzarella di Bufala Campana PDO cheese (MBC) is a globally esteemed Italian cheese. The traditional cheesemaking process of MBC relies on natural whey starter culture, water buffalo's milk, and the local agroecosystem.MethodsIn this study, the microbial ecology of intermediate samples of MBC production, coming from two dairies with slightly different cheesemaking technology (dairy M large producer, and dairy C medium-small), was investigated using 16S rRNA amplicon sequencing. This research aimed to provide insights into the dynamics of microbial consortia involved in various cheesemaking steps.Results and discussionAll samples, except for raw buffalo milk, exhibited a core microbiome predominantly composed of Streptococcus spp. and Lactobacillus spp., albeit with different ratios between the two genera across the two MBC producers. Notably, the microbiota of the brine from both dairies, analyzed using 16S amplicon sequencing for the first time, was dominated by the Lactobacillus and Streptococcus genera, while only dairy C showed the presence of minor genera such as Pediococcus and Lentilactobacillus. Intriguingly, the final mozzarella samples from both producers displayed an inversion in the dominance of Lactobacillus spp. over Streptococcus spp. in the microbiota compared to curd samples, possibly attributable to the alleviation of thermal stress following the curd stretching step. In conclusion, the different samples from the two production facilities did not exhibit significant differences in terms of the species involved in MBC cheesemaking. This finding confirms that the key role in the MBC cheesemaking process lies with a small-sized microbiome primarily composed of Streptococcus and Lactobacillus spp

    First serological evidence of SARS-CoV-2 natural infection in small ruminants : Brief report

    Get PDF
    : Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) emerged in late December 2019 and spread worldwide, quickly becoming a pandemic. This zoonotic coronavirus shows a broad host range, including wildlife and domestic animals. Small ruminants are shown to be susceptible to SARS-CoV-2 but, to date, no natural infection has been reported. Herein, we performed a survey for SARS-CoV-2 among sheep and goats in the Campania region of Italy using an indirect multispecies ELISA. Next, positive sera were submitted to virus serum neutralization for the quantification of specific neutralizing antibodies. Out of 612 sheep and goats, 23 were found ELISA positive (3.75%) and 1 of them showed 1:20 neutralizing antibodies titer. No significant difference was found between the two species, as well as between male and female, geographical location and age. Our findings demonstrate that natural infection can occur in flocks in a field situation. Moreover, low susceptibility to SARS-CoV-2 is reported for sheep and goats, nevertheless, the continuous mutations of this virus open new scenarios on viral host range and tropism, highlighting the importance of investigating animal species that could represent ongoing or future possible hosts

    First Description of Serological Evidence for SARS-CoV-2 in Lactating Cows

    Get PDF
    Following the COVID-19 epidemic outbreak in Ariano Irpino, Campania region (Italy), we tested lactating cows for the presence of SARS-CoV-2 on a cattle farm at which, prior to the investigation, 13 of the 20 farmworkers showed COVID-19-like symptoms, and one of them died. Twenty-four lactating cows were sampled to detect SARS-CoV-2. All nasal and rectal swabs and milk samples were negative for SARS-CoV-2 RNA. Of the 24 collected serum samples, 11 showed antibodies against SARS-CoV-2 nucleocapsid protein, 14 showed antibodies against SARS-CoV-2 spike protein, and 13 developed neutralising antibodies for SARS-COV-2; all samples were negative for Bovine Coronavirus (BCoV), another betacoronavirus. To our knowledge, this is the first report of natural serological evidence of SARS-CoV-2 infection in lactating cows. We hypothesise that this may be a case of reverse zoonosis. However, the role of cattle in SARS-CoV-2 infection and transmission seems to be negligible

    The Influence of Viable Cells and Cell-Free Extracts of Lactobacillus casei on Volatile Compounds and Polyphenolic Profile of Elderberry Juice

    Get PDF
    In this study, four strains of Lactobacillus casei, as viable cells or cell-free extracts (CFE), were added to elderberry juice in order to evaluate their effect on phenolic and aromatic profile. Two of them were able to grow in juice while the others showed zero-growth. The same strains were lysed and added as extracts in elderberry juice. Multivariate statistical analysis show a separation among samples containing growing cells, non-growing cells, CFE, highlighting the particularities of specific strains. Juices added with CFE presented the highest amount of esters. The strains showing growth phenotype cause an increase of phenyllactic acids. The highest concentration of volatile compounds, particularly of alcohols, terpenes and norisoprenoids (responsible for typical elderberry notes) was observed in samples with strains showing zero-growth. Moreover, a significant increase in anthocyanin content was observed in these samples, suggesting the possible use of Lactobacillus for increasing specific molecules, even for non-multiplying bacterial cell. Considering that this is the first study concerning the use of non-growing cells in fruit juice, the potential of strains is still to be explored and it may have a significant technological application in the development of a microbial collection useful for fruit juice industry

    Autism and neurodevelopmental disorders: the Sars-Cov-2 pandemic implications

    Get PDF
    The Special Issue (SI) “Autism and Neurodevelopmental Disorders: The SARS-CoV-2 Pandemic Implications” is an interesting project that adopted a scientific point of view with important implications in clinical and practical fields [...

    Volatile profile of elderberry juice: Effect of lactic acid fermentation using L. plantarum, L. rhamnosus and L. casei strains

    No full text
    In this study we explored, for the first time, the lactic acid fermentation of elderberry juice (EJ). A total of 15 strains isolated from dairy and plant matrices, belonging to L. plantarum, L. rhamnosus and L. casei, were used for fermentations. The volatile profile of started and unstarted EJ was characterized by HS-SPME/GC-MS technique after 48 h of fermentation and 12 days of storage at 4 °C. All L. plantarum and L. rhamnosus strains exhibited a good capacity of growth while not all L. casei strains showed the same ability. The aromatic profile of fermented juices was characterized by the presence of 82 volatile compounds pertaining to different classes: alcohols, terpenes and norisoprenoids, organic acids, ketones and esters. Elderberry juice fermented with L. plantarum strains showed an increase of total volatile compounds after 48 h while the juices fermented with L. rhamnosus and L. casei exhibited a larger increase after the storage. The highest concentration of total volatile compounds were observed in EJ fermented with L. plantarum 285 isolated from dairy product. Ketones increased in all fermented juices both after fermentation and storage and the most concentrated were acetoin and diacetyl. The organic acids were also affected by lactic acid fermentation and the most abundant acids detected in fermented juices were acetic acid and isovaleric acid. Hexanol, 3-hexen-1-ol (Z) and 2-hexen-1-ol (E) were positively influenced during dairy lactic acid bacteria strains fermentation. The most represented esters were ethyl acetate, methyl isovalerate, isoamyl isovalerate and methyl salicylate, all correlated with fruit notes. Among terpenes and norisoprenoids, β-damascenone resulted the main representative with its typical note of elderberry. Furthermore, coupling obtained data with multivariate statistical analyses, as Principal Component Analysis (PCA) and Classification Trees (CT), it was possible to relate the characteristic volatile profile of samples with the different species and strains applied in this study

    Influence of Processing Parameters and Natural Antimicrobial on Alicyclobacillus acidoterrestris and Clostridium pasteurianum Using Response Surface Methodology

    No full text
    The food industry must ensure the stability of the products, and this is often achieved by exposing foods to heat treatments that are able to ensure the absence of pathogenic or spoilage microorganisms. These treatments are different in terms of temperature and duration and could lead to a loss in nutritional and sensory value. Moreover, some types of microorganisms manage to survive these treatments thanks to the sporification process. The addition of antimicrobials can become necessary, but at present, consumers are more inclined toward natural products, avoiding synthetic and chemical additives. Antimicrobials from plants could be a valuable option and, in this context, a patent concerning an antimicrobial extract from fermented plant substrate was recently tested against foodborne pathogens revealing high antimicrobial activity. The objective of this study was the creation of a model for the evaluation and subsequent prediction of the combined effect of different process and product variables, including antimicrobial addition, on the inhibition and reduction of spore germination of target microorganisms, Alicyclobacillus acidoterrestris and Clostridium pasteurianum, responsible for spoilage of tomato-based products

    Influence of Processing Parameters and Natural Antimicrobial on <i>Alicyclobacillus acidoterrestris</i> and <i>Clostridium pasteurianum</i> Using Response Surface Methodology

    No full text
    The food industry must ensure the stability of the products, and this is often achieved by exposing foods to heat treatments that are able to ensure the absence of pathogenic or spoilage microorganisms. These treatments are different in terms of temperature and duration and could lead to a loss in nutritional and sensory value. Moreover, some types of microorganisms manage to survive these treatments thanks to the sporification process. The addition of antimicrobials can become necessary, but at present, consumers are more inclined toward natural products, avoiding synthetic and chemical additives. Antimicrobials from plants could be a valuable option and, in this context, a patent concerning an antimicrobial extract from fermented plant substrate was recently tested against foodborne pathogens revealing high antimicrobial activity. The objective of this study was the creation of a model for the evaluation and subsequent prediction of the combined effect of different process and product variables, including antimicrobial addition, on the inhibition and reduction of spore germination of target microorganisms, Alicyclobacillus acidoterrestris and Clostridium pasteurianum, responsible for spoilage of tomato-based products

    Prevalence of feline leukemia virus and feline immunodeficiency virus in cats from southern Italy: a 10-year cross-sectional study

    Get PDF
    IntroductionFeline immunodeficiency virus (FIV) and feline leukemia virus (FeLV) are well-known retroviruses causing important infections in domestic cats worldwide. The goal of this study was to determine the prevalence of FeLV and FIV infections in cat living indoor and outdoor in southern Italy.MethodsThe survey was conducted on 1322 stray and owned cats from the regions of Campania, Basilicata, and Calabria. It was carried out over a 10-year period to obtain a more realistic picture of the prevalence of these retroviral diseases in the country. FIV and FeLV status was determined by enzyme-linked immunosorbent assay (ELISA) using a commercial kit (SNAP Combo Plus FeLV/FIV, IDEXX). Risk factors were analysed by logistic regression.Results and DiscussionThe results showed that 101/1322 (7.64%) cats were positive for FeLV antigen and 110/1322 (8.32%) cats were positive for FIV antibody. Twenty-six of the 1322 cats (1.97%) were positive for both FIV and FeLV infection. Our results are similar to those published in recent studies in Europe. A statistically significant association (p &lt; 0.05) was found between year, province, region, lifestyle and risk of FeLV infection. FIV positivity was instead statistically associated only with year and lifestyle
    corecore