4 research outputs found

    Inhibition of IL-34 Unveils Tissue-Selectivity and Is Sufficient to Reduce Microglial Proliferation in a Model of Chronic Neurodegeneration

    Get PDF
    The proliferation and activation of microglia, the resident macrophages in the brain, is a hallmark of many neurodegenerative diseases such as Alzheimer´s disease (AD) and prion disease. Colony stimulating factor 1 receptor (CSF1R) is critically involved in regulating microglial proliferation, and CSF1R blocking strategies have been recently used to modulate microglia in neurodegenerative diseases. However, CSF1R is broadly expressed by many cell types and the impact of its inhibition on the innate immune system is still unclear. CSF1R can be activated by two independent ligands, CSF-1 and interleukin 34 (IL-34). Recently, it has been reported that microglia development and maintenance depend on IL-34 signalling. In this study, we evaluate the inhibition of IL-34 as a novel strategy to reduce microglial proliferation in the the ME7 model of prion disease. Selective inhibition of IL-34 showed no effects on peripheral macrophage populations in healthy mice, avoiding the side effects observed after CSF1R inhibition on the systemic compartment. However, we observed a reduction in microglial proliferation after IL-34 inhibition in prion-diseased mice, indicating that microglia could be more specifically targeted by reducing IL-34. Overall, our results highlight the challenges of targeting the CSF1R/IL34 axis in the systemic and central compartments, important for framing any therapeutic effort to tackle microglia/macrophage numbers during brain disease

    Targeting microglial population dynamics in Alzheimer’s disease: are we ready for a potential impact on immune function?

    No full text
    Alzheimer’s disease (AD) is the most common form of dementia, affecting two-thirds of people with dementia in the world. To date, no disease-modifying treatments are available to stop or delay the progression of AD. This chronic neurodegenerative disease is dominated by a strong innate immune response, whereby microglia plays a central role as the main resident macrophage of the brain. Recent genome-wide association studies (GWASs) have identified single-nucleotide polymorphisms (SNPs) located in microglial genes and associated with a delayed onset of AD, highlighting the important role of these cells on the onset and/or progression of the disease. These findings have increased the interest in targeting microglia-associated neuroinflammation as a potential disease-modifying therapeutic approach for AD. In this review we provide an overview on the contribution of microglia to the pathophysiology of AD, focusing on the main regulatory pathways controlling microglialdynamics during the neuroinflammatory response, such as the colony-stimulating factor 1 receptor (CSF1R), its ligands (the colony stimulating factor 1and interleukin 34) and the transcription factor PU.1. We also discuss the current therapeutic strategies targeting proliferationto modulate microglia-associated neuroinflammation and their potential impact on peripheral immune cell populations in the short and long-term. Understanding the effects ofimmunomodulatory approaches on microglia and other immune cell types might be critical for developing specific, effective and safe therapies for neurodegenerative diseases

    Replicative senescence dictates the emergence of disease-associated microglia and contributes to Aβ pathology

    No full text
    The sustained proliferation of microglia is a key hallmark of Alzheimer’s disease (AD), accelerating its progression. Here, we sought to understand the long-term impact of the early and prolonged microglial proliferation observed in AD, hypothesising that extensive and repeated cycling would engender a distinct transcriptional and phenotypic trajectory. We found that the early and sustained microglial proliferation seen in an AD-like model promotes replicative senescence, characterised by increased βgal activity, a senescence-associated transcriptional signature and telomere shortening, correlating with the appearance of disease-associated microglia (DAM) and senescent microglial profiles in human post-mortem AD cases. Prevention of early microglial proliferation hindered the development of senescence and DAM, impairing the accumulation of Aβ and associated neuritic damage. Overall, our results support that excessive microglial proliferation leads to the generation of senescent DAM, which contribute to early Aβ pathology in AD
    corecore