2,024 research outputs found

    Benthic biomass size spectra in shelf and deep-sea sediments

    Get PDF
    The biomass distributions of marine benthic metazoans (meio- to macro-fauna, 1 ?g–32 mg wet weight) across three contrasting sites were investigated to test the hypothesis that allometry can consistently explain observed trends in biomass spectra. Biomass (and abundance) size spectra were determined from observations made at the Faroe–Shetland Channel (FSC) in the Northeast Atlantic (water depth 1600 m), the Fladen Ground (FG) in the North Sea (150 m), and the hypoxic Oman Margin (OM) in the Arabian Sea (500 m). Observed biomass increased with body size as a power law at FG (scaling exponent, b = 0.16) and FSC (b = 0.32), but less convincingly at OM (b = 0.12 but not significantly different from 0). A simple model was constructed to represent the same 16 metazoan size classes used for the observed spectra, all reliant on a common detrital food pool, and allowing the three key processes of ingestion, respiration and mortality to scale with body size. A micro-genetic algorithm was used to fit the model to observations at the sites. The model accurately reproduces the observed scaling without needing to include the effects of local influences such as hypoxia. Our results suggest that the size-scaling of mortality and ingestion are dominant factors determining the distribution of biomass across the meio- to macrofaunal size range in contrasting marine sediment communities. Both the observations and the model results are broadly in agreement with the "metabolic theory of ecology" in predicting a quarter power scaling of biomass across geometric body size classes

    Synthesis of Ligand free CdS Nanoparticles within a Sulfur Copolymer Matrix

    Get PDF
    Aliphatic ligands are typically used during the synthesis of nanoparticles to help mediate their growth in addition to operating as high temperature solvents. These coordinating ligands help solubilize and stabilize the nanoparticles while in solution, and can influence the resulting size and reactivity of the nanoparticles during their formation. Despite the ubiquity of using ligands during synthesis, the presence of aliphatic ligands on the nanoparticle surface can result in a number of problems during the end use of the nanoparticles, necessitating further ligand stripping or ligand exchange procedures. We have developed a way to synthesize cadmium sulfide CdS nanoparticles using a unique sulfur copolymer. This sulfur copolymer is primarily composed of elemental sulfur, which is a cheap and abundant material. The sulfur copolymer has the advantages of operating both as a high temperature solvent and as a sulfur source, which can react with a cadmium precursor during nanoparticle synthesis, resulting in the generation of ligand free CdS. During the reaction, only some of the copolymer is consumed to produce CdS, while the rest remains in the polymeric state, thereby producing a nanocomposite material. Once the reaction is finished, the copolymer stabilizes the nanoparticles within a solid polymeric matrix. The copolymer can then be removed before the nanoparticles are used, which produces nanoparticles that do not have organic coordinating ligands. This nascent synthesis technique presents a method to produce metal sulfide nanoparticles for a wide variety of applications where the presence of organic ligands is not desired

    Constraining the nuclear equation of state at subsaturation densities

    Get PDF
    Only one third of the nucleons in 208^{208}Pb occupy the saturation density area. Consequently nuclear observables related to average properties of nuclei, such as masses or radii, constrain the equation of state (EOS) not at saturation density but rather around the so-called crossing density, localised close to the mean value of the density of nuclei: ρ\rho\simeq0.11 fm3^{-3}. This provides an explanation for the empirical fact that several EOS quantities calculated with various functionals cross at a density significantly lower than the saturation one. The third derivative M of the energy at the crossing density is constrained by the giant monopole resonance (GMR) measurements in an isotopic chain rather than the incompressibility at saturation density. The GMR measurements provide M=1110 ±\pm 70 MeV (6% uncertainty), whose extrapolation gives K_\infty=230 ±\pm 40 MeV (17% uncertainty).Comment: 4 pages, 4 figure

    Strategic Time Slot Management: A Priori Routing for Online Grocery Retailing

    Get PDF
    Time slot management refers to the design and control of the delivery time slots offered to customers during the online ordering process. Strategic time slot management is an innovative variant in which only a single time slot is offered each day of the week and a priori delivery routes are used to guide time slot availability. Strategic time slot management simplifies time slot control and fulfillment center operations. We propose a 2-stage stochastic programming formulation for the design of a priori delivery routes and time slot assignments and a sample average approximation algorithm for its solution. An efficient dynamic program is developed for calculating the expected revenue of an a priori route. An extensive computational study demonstrate the efficacy of the proposed approach and provides insights in to the benefits of strategic time slot management

    Phylogenetic relationships among species of Ganoderma (Ganodermataceae, Basigiomycota) from Cameroon

    Get PDF
    Ganoderma is an important genus of the Polyporales in the tropics. Identification of tropical species has mainly been based on morphology, which has led to misidentification. This study aimed to elucidate the diversity and phylogenetic relationships of Ganoderma isolates from different hosts in Cameroon using morphological and molecular techniques. Analyses of basidiocarp morphology and the internal transcribed spacer and mitochondria small subunit were undertaken for 28 isolates from five plant species. The results show that the isolates belong to eight species. Three of the species were identified to species level; of these only G. ryvardense has been previously described from Cameroon while G. cupreum and G. weberianum are new records. The five remaining species did not match with any previously described species and have been designated as Ganoderma with different species affinities.Laboratory work for this research was funded by the Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, South Africa under the Tree Protection Co-operative Program (TPCP) and Centre for Excellence in Tree Health Biotechnology (CTHB). Fieldwork and equipment were sponsored by the Rufford Small Grant for Nature Conservation and Idea Wild Grant.http://www.publish.csiro.au/nid/65.htmhb2017Forestry and Agricultural Biotechnology Institute (FABI)Genetic

    Improved endothelial function after a modified harvesting technique of the internal thoracic artery

    Get PDF
    Objective: One of the most important factors in bypass surgery is the preservation of endothelial function in the arterial graft. It was of interest, therefore, whether a slightly modified preparation procedure during surgery could contribute to improved endothelial function of the graft. We compared the functional activity of internal thoracic arteries (ITA) prepared according to the traditional harvesting method with occlusion by a clip, dissection at the distal end and storage of the artery in papaverine until its implantation (CA) with the functional activity of arteries which were also prepared and wrapped in papaverine, but were left perfused and dissected immediately before their anastomoses (PA). Methods: Samples of ITA were obtained from a total number of 28 patients, undergoing bypass surgery, and randomly distributed into two groups. The arteries were cut into rings and suspended in organ baths, containing Krebs-Henseleit solution, for isometric tension recording. Cumulative concentration response curves were determined for the contractile agents endothelin-1 (ET-1), 5-hydroxytryptamine (5-HT), noradrenaline (NA) and potassium chloride (KCl) and the relaxant compounds acetylcholine (ACH) and sodium nitroprusside (SNP) during active tone induced by 30 mM KCl. Results: ET-1 and 5-HT stimulated rings from both groups within the same concentration ranges but elicited significantly (P<0.05) higher contractile responses in CA compared to PA. By contrast, concentration response curves for KCl and NA where nearly superimposable. On the other hand, maximal endothelium-dependent relaxant responses to ACH proved to be significantly stronger in PA (0.84±0.20 g) as compared to CA (0.31±0.05 g, P<0.05) while endothelium independent relaxant responses to SNP where similar in both groups. Conclusion: These data suggest that leaving the ITA perfused during harvesting might improve considerably the endothelial function of the graf

    Simplest random K-satisfiability problem

    Full text link
    We study a simple and exactly solvable model for the generation of random satisfiability problems. These consist of γN\gamma N random boolean constraints which are to be satisfied simultaneously by NN logical variables. In statistical-mechanics language, the considered model can be seen as a diluted p-spin model at zero temperature. While such problems become extraordinarily hard to solve by local search methods in a large region of the parameter space, still at least one solution may be superimposed by construction. The statistical properties of the model can be studied exactly by the replica method and each single instance can be analyzed in polynomial time by a simple global solution method. The geometrical/topological structures responsible for dynamic and static phase transitions as well as for the onset of computational complexity in local search method are thoroughly analyzed. Numerical analysis on very large samples allows for a precise characterization of the critical scaling behaviour.Comment: 14 pages, 5 figures, to appear in Phys. Rev. E (Feb 2001). v2: minor errors and references correcte

    Anisotropic Inflation from Charged Scalar Fields

    Full text link
    We consider models of inflation with U(1) gauge fields and charged scalar fields including symmetry breaking potential, chaotic inflation and hybrid inflation. We show that there exist attractor solutions where the anisotropies produced during inflation becomes comparable to the slow-roll parameters. In the models where the inflaton field is a charged scalar field the gauge field becomes highly oscillatory at the end of inflation ending inflation quickly. Furthermore, in charged hybrid inflation the onset of waterfall phase transition at the end of inflation is affected significantly by the evolution of the background gauge field. Rapid oscillations of the gauge field and its coupling to inflaton can have interesting effects on preheating and non-Gaussianities.Comment: minor changes, references added, figures are modified, conforms JCAP published versio
    corecore