48 research outputs found

    Crucial function of histone deacetylase 1 for differentiation of teratomas in mice and humans

    Get PDF
    Although histone deacetylases are generally known as pro-tumourigenic factors, loss of HDAC1 is here shown to promote proliferation and inhibit differentiation in a mouse teratoma model, at least partly via regulation of the transcription factor SNAIL1

    STAT3 regulated ARF expression suppresses prostate cancer metastasis.

    Get PDF
    Prostate cancer (PCa) is the most prevalent cancer in men. Hyperactive STAT3 is thought to be oncogenic in PCa. However, targeting of the IL-6/STAT3 axis in PCa patients has failed to provide therapeutic benefit. Here we show that genetic inactivation of Stat3 or IL-6 signalling in a Pten-deficient PCa mouse model accelerates cancer progression leading to metastasis. Mechanistically, we identify p19(ARF) as a direct Stat3 target. Loss of Stat3 signalling disrupts the ARF-Mdm2-p53 tumour suppressor axis bypassing senescence. Strikingly, we also identify STAT3 and CDKN2A mutations in primary human PCa. STAT3 and CDKN2A deletions co-occurred with high frequency in PCa metastases. In accordance, loss of STAT3 and p14(ARF) expression in patient tumours correlates with increased risk of disease recurrence and metastatic PCa. Thus, STAT3 and ARF may be prognostic markers to stratify high from low risk PCa patients. Our findings challenge the current discussion on therapeutic benefit or risk of IL-6/STAT3 inhibition.Lukas Kenner and Jan Pencik are supported by FWF, P26011 and the Genome Research-Austria project “Inflammobiota” grants. Helmut Dolznig is supported by the Herzfelder Family Foundation and the Niederösterr. Forschungs-und Bildungsges.m.b.H (nfb). Richard Moriggl is supported by grant SFB-F2807 and SFB-F4707 from the Austrian Science Fund (FWF), Ali Moazzami is supported by Infrastructure for biosciences-Strategic fund, SciLifeLab and Formas, Zoran Culig is supported by FWF, P24428, Athena Chalaris and Stefan Rose-John are supported by the Deutsche Forschungsgemeinschaft (Grant SFB 877, Project A1and the Cluster of Excellence --“Inflammation at Interfaces”). Work of the Aberger lab was supported by the Austrian Science Fund FWF (Projects P25629 and W1213), the European FP7 Marie-Curie Initial Training Network HEALING and the priority program Biosciences and Health of the Paris-Lodron University of Salzburg. Valeria Poli is supported by the Italian Association for Cancer Research (AIRC, No IG13009). Richard Kennedy and Steven Walker are supported by the McClay Foundation and the Movember Centre of Excellence (PC-UK and Movember). Gerda Egger is supported by FWF, P27616. Tim Malcolm and Suzanne Turner are supported by Leukaemia and Lymphoma Research.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms873

    High-intensity focused ultrasound: past, present, and future in neurosurgery

    Get PDF
    Since Lynn and colleagues first described the use of focused ultrasound (FUS) waves for intracranial ablation in 1942, many strides have been made toward the treatment of several brain pathologies using this novel technology. In the modern era of minimal invasiveness, high-intensity focused ultrasound (HIFU) promises therapeutic utility for multiple neurosurgical applications, including treatment of tumors, stroke, epilepsy, and functional disorders. Although the use of HIFU as a potential therapeutic modality in the brain has been under study for several decades, relatively few neuroscientists, neurologists, or even neurosurgeons are familiar with it. In this extensive review, the authors intend to shed light on the current use of HIFU in different neurosurgical avenues and its mechanism of action, as well as provide an update on the outcome of various trials and advances expected from various preclinical studies in the near future. Although the initial technical challenges have been overcome and the technology has been improved, only very few clinical trials have thus far been carried out. The number of clinical trials related to neurological disorders is expected to increase in the coming years, as this novel therapeutic device appears to have a substantial expansive potential. There is great opportunity to expand the use of HIFU across various medical and surgical disciplines for the treatment of different pathologies. As this technology gains recognition, it will open the door for further research opportunities and innovation

    Clinical and Genetic Advances in Paget’s Disease of Bone: a Review

    Get PDF

    MRI-guided in-bore biopsy of the prostate – defining the optimal number of cores needed

    No full text
    Abstract Background Numerous studies have shown that magnetic resonance imaging (MRI)-targeted biopsy approaches are superior to traditional systematic transrectal ultrasound guided biopsy (TRUS-Bx). The optimal number of biopsy cores to be obtained per lesion identified on multiparametric MRI (mpMRI) images, however, remains a matter of debate. The aim of this study was to evaluate the incremental value of additional biopsy cores in an MRI-targeted “in-bore”-biopsy (MRI-Bx) setting. Patients and methods Two hundred and forty-five patients, who underwent MRI-Bx between June 2014 and September 2021, were included in this retrospective single-center analysis. All lesions were biopsied with at least five biopsy cores and cumulative detection rates for any cancer (PCa) as well as detection rates of clinically significant cancers (csPCa) were calculated for each sequentially labeled biopsy core. The cumulative per-core detection rates are presented as whole numbers and as proportion of the maximum detection rate reached, when all biopsy cores were considered. CsPCa was defined as Gleason Score (GS) ≥ 7 (3 + 4). Results One hundred and thirty-two of 245 Patients (53.9%) were diagnosed with prostate cancer and csPCa was found in 64 (26.1%) patients. The first biopsy core revealed csPCa/ PCa in 76.6% (49/64)/ 81.8% (108/132) of cases. The second, third and fourth core found csPCa/ PCa not detected by previous cores in 10.9% (7/64)/ 8.3% (11/132), 7.8% (5/64)/ 5.3% (7/132) and 3.1% (2/64)/ 3% (4/132) of cases, respectively. Obtaining one or more cores beyond the fourth biopsy core resulted in an increase in detection rate of 1.6% (1/64)/ 1.5% (2/132). Conclusion We found that obtaining five cores per lesion maximized detection rates. If, however, future research should establish a clear link between the incidence of serious complications and the number of biopsy cores obtained, a three-core biopsy might suffice as our results suggest that about 95% of all csPCa are detected by the first three cores
    corecore