3 research outputs found

    Molecular Dynamics Simulations and Structure-Based Rational Design Lead to Allosteric HCV NS5B Polymerase Thumb Pocket 2 Inhibitor with Picomolar Cellular Replicon Potency

    Full text link
    The design and preliminary SAR of a new series of 1<i>H</i>-quinazolin-4-one (QAZ) allosteric HCV NS5B thumb pocket 2 (TP-2) inhibitors was recently reported. To support optimization efforts, a molecular dynamics (MD) based modeling workflow was implemented, providing information on QAZ binding interactions with NS5B. This approach predicted a small but critical ligand-binding induced movement of a protein backbone region which increases the pocket size and improves access to the backbone carbonyl groups of Val 494 and Pro 495. This localized backbone shift was consistent with key SAR results and was subsequently confirmed by X-ray crystallography. The MD protocol guided the design of inhibitors, exploiting novel H-bond interactions with the two backbone carbonyl groups, leading to the first thumb pocket 2 NS5B inhibitor with picomolar antiviral potency in genotype (gt) 1a and 1b replicons (EC<sub>50</sub> = 120 and 110 pM, respectively) and with EC<sub>50</sub> ā‰¤ 80 nM against gt 2ā€“6

    Conformation-Based Restrictions and Scaffold Replacements in the Design of Hepatitis C Virus Polymerase Inhibitors: Discovery of Deleobuvir (BI 207127)

    Full text link
    Conformational restrictions of flexible torsion angles were used to guide the identification of new chemotypes of HCV NS5B inhibitors. Sites for rigidification were based on an acquired conformational understanding of compound binding requirements and the roles of substituents in the free and bound states. Chemical bioisosteres of amide bonds were explored to improve cell-based potency. Examples are shown, including the design concept that led to the discovery of the phase III clinical candidate deleobuvir (BI 207127). The structure-based strategies employed have general utility in drug design

    Discovery of the First Thumb Pocket 1 NS5B Polymerase Inhibitor (BILB 1941) with Demonstrated Antiviral Activity in Patients Chronically Infected with Genotype 1 Hepatitis C Virus (HCV)

    Full text link
    Combinations of direct acting antivirals (DAAs) that have the potential to suppress emergence of resistant virus and that can be used in interferon-sparing regimens represent a preferred option for the treatment of chronic HCV infection. We have discovered allosteric (thumb pocket 1) non-nucleoside inhibitors of HCV NS5B polymerase that inhibit replication in replicon systems. Herein, we report the late-stage optimization of indole-based inhibitors, which began with the identification of a metabolic liability common to many previously reported inhibitors in this series. By use of parallel synthesis techniques, a sparse matrix of inhibitors was generated that provided a collection of inhibitors satisfying potency criteria and displaying improved in vitro ADME profiles. ā€œCassetteā€ screening for oral absorption in rat provided a short list of potential development candidates. Further evaluation led to the discovery of the first thumb pocket 1 NS5B inhibitor (BILB 1941) that demonstrated antiviral activity in patients chronically infected with genotype 1 HCV
    corecore