54 research outputs found
Mission Operations and Navigation Toolkit Environment
MONTE (Mission Operations and Navigation Toolkit Environment) Release 7.3 is an extensible software system designed to support trajectory and navigation analysis/design for space missions. MONTE is intended to replace the current navigation and trajectory analysis software systems, which, at the time of this reporting, are used by JPL's Navigation and Mission Design section. The software provides an integrated, simplified, and flexible system that can be easily maintained to serve the needs of future missions in need of navigation services
Mars Science Laboratory Interplanetary Navigation Performance
The Mars Science Laboratory spacecraft, carrying the Curiosity rover to Mars, hit the top of the Martian atmosphere just 200 meters from where it had been predicted more than six days earlier, and 2.6 million kilometers away. This un-expected level of accuracy was achieved by a combination of factors including: spacecraft performance, tracking data processing, dynamical modeling choices, and navigation filter setup. This paper will describe our best understanding of what were the factors that contributed to this excellent interplanetary trajectory prediction performance. The accurate interplanetary navigation contributed to the very precise landing performance, and to the overall success of the mission
The Next 25 Years of Deep Space Navigation
This paper reviews the most probable set of NASA deep space missions that will be launched in the next twenty-five years, discusses the navigational challenges that will confront them, and outlines the most probable solutions to these challenges
Mars Science Laboratory Interplanetary Navigation Analysis
The Mars Science Laboratory (MSL) is a NASA rover mission that will be launched in late 2011 and will land on Mars in August of 2012. This paper describes the analyses performed to validate the navigation system for launch, interplanetary cruise, and approach. MSL will use guidance during its descent into Mars in order to minimize landing dispersions, and therefore will be able to use smaller landing zones that are closer to terrain of high scientific interest. This will require a more accurate delivery of the spacecraft to the atmospheric entry interface, and a late update of the state of the spacecraft at entry. During cruise and approach the spacecraft may perform up to six trajectory correction maneuvers (TCMs), to target to the desired landing site with the required flight path angle at entry. Approach orbit determination covariance analyses have been performed to evaluate the accuracy that can be achieved in delivering the spacecraft to the entry interface point, and to determine how accurately the state of the spacecraft can be predicted to initialize the guidance algorithm. In addition, a sensitivity analysis has been performed to evaluate which factors most contribute to the improvement or degradation of the navigation performance, for both entry flight path angle delivery and entry state knowledge
The Next 25 Years of Deep Space Navigation
This slide presentation reviews the missions that will be flown into deep space in the next 25 years, the navigational challenges for these missions, and the strategies that will be used to overcome these challenges. The challenges include: (1) an incresed need for autonomous navigation, (2) an increased use of in-situ and optical navigation, (3) an increased use of low-thrust propulsion, (4) an increased need for higher accuracy in guidance, navigation, and control, and an increased need for integration between flight path and attitude control. The enabling strategies that are planned for use are: (1) Advance Radio-Metric Tracking Capabilities, (2) Expand the Use of Optical Navigation, (3) Develop General-Purpose Autonomous Navigation Capabilities, (4) Improve Frequency and Timing Systems, and (5) Develop In-situ Tracking Infrastructure. Future trends that are being developed are Optical and Autonomous Navigatio
Interplanetary CubeSat Navigational Challenges
CubeSats are miniaturized spacecraft of small mass that comply with a form specification so they can be launched using standardized deployers. Since the launch of the first CubeSat into Earth orbit in June of 2003, hundreds have been placed into orbit. There are currently a number of proposals to launch and operate CubeSats in deep space, including MarCO, a technology demonstration that will launch two CubeSats towards Mars using the same launch vehicle as NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) Mars lander mission. The MarCO CubeSats are designed to relay the information transmitted by the InSight UHF radio during Entry, Descent, and Landing (EDL) in real time to the antennas of the Deep Space Network (DSN) on Earth. Other CubeSatts proposals intend to demonstrate the operation of small probes in deep space, investigate the lunar South Pole, and visit a near Earth object, among others. Placing a CubeSat into an interplanetary trajectory makes it even more challenging to pack the necessary power, communications, and navigation capabilities into such a small spacecraft. This paper presents some of the challenges and approaches for successfully navigating CubeSats and other small spacecraft in deep space
Mars Science Laboratory Orbit Determination Data Pre-Processing
The Mars Science Laboratory (MSL) was spin-stabilized during its cruise to Mars. We discuss the effects of spin on the radiometric data and how the orbit determination team dealt with them. Additionally, we will discuss the unplanned benefits of detailed spin modeling including attitude estimation and spacecraft clock correlation
- …