56 research outputs found

    Effect of Viscosity on Mechanics of Single, Skinned Fibers from Rabbit Psoas Muscle

    Get PDF
    AbstractMuscle contraction is highly dynamic and thus may be influenced by viscosity of the medium surrounding the myofilaments. Single, skinned fibers from rabbit psoas muscle were used to test this hypothesis. Viscosity within the myofilament lattice was increased by adding to solutions low molecular weight sugars (disaccharides sucrose or maltose or monosaccharides glucose or fructose). At maximal Ca2+ activation, isometric force (Fi) was inhibited at the highest solute concentrations studied, but this inhibition was not directly related to viscosity. Solutes readily permeated the filament lattice, as fiber diameter was unaffected by added solutes (except for an increased diameter with Fi<30% of control). In contrast, there was a linear dependence upon 1/viscosity for both unloaded shortening velocity and also the kinetics of isometric tension redevelopment; these effects were unrelated to either variation in solution osmolarity or inhibition of force. All effects of added solute were reversible. Inhibition of both isometric as well as isotonic kinetics demonstrates that viscous resistance to filament sliding was not the predominant factor affected by viscosity. This was corroborated by measurements in relaxed fibers, which showed no significant change in the strain-rate dependence of elastic modulus when viscosity was increased more than twofold. Our results implicate cross-bridge diffusion as a significant limiting factor in cross-bridge kinetics and, more generally, demonstrate that viscosity is a useful probe of actomyosin dynamics

    Green function techniques in the treatment of quantum transport at the molecular scale

    Full text link
    The theoretical investigation of charge (and spin) transport at nanometer length scales requires the use of advanced and powerful techniques able to deal with the dynamical properties of the relevant physical systems, to explicitly include out-of-equilibrium situations typical for electrical/heat transport as well as to take into account interaction effects in a systematic way. Equilibrium Green function techniques and their extension to non-equilibrium situations via the Keldysh formalism build one of the pillars of current state-of-the-art approaches to quantum transport which have been implemented in both model Hamiltonian formulations and first-principle methodologies. We offer a tutorial overview of the applications of Green functions to deal with some fundamental aspects of charge transport at the nanoscale, mainly focusing on applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references, submitted to Springer series "Lecture Notes in Physics

    Quantitative In Vivo Magnetic Resonance Spectroscopy Using Synthetic Signal Injection

    Get PDF
    Accurate conversion of magnetic resonance spectra to quantitative units of concentration generally requires compensation for differences in coil loading conditions, the gains of the various receiver amplifiers, and rescaling that occurs during post-processing manipulations. This can be efficiently achieved by injecting a precalibrated, artificial reference signal, or pseudo-signal into the data. We have previously demonstrated, using in vitro measurements, that robust pseudo-signal injection can be accomplished using a second coil, called the injector coil, properly designed and oriented so that it couples inductively with the receive coil used to acquire the data. In this work, we acquired nonlocalized phosphorous magnetic resonance spectroscopy measurements from resting human tibialis anterior muscles and used pseudo-signal injection to calculate the Pi, PCr, and ATP concentrations. We compared these results to parallel estimates of concentrations obtained using the more established phantom replacement method. Our results demonstrate that pseudo-signal injection using inductive coupling provides a robust calibration factor that is immune to coil loading conditions and suitable for use in human measurements. Having benefits in terms of ease of use and quantitative accuracy, this method is feasible for clinical use. The protocol we describe could be readily translated for use in patients with mitochondrial disease, where sensitive assessment of metabolite content could improve diagnosis and treatment

    Last Word on Point:Counterpoint: Muscle lactate and H +

    No full text
    • …
    corecore