94 research outputs found
No evidence for top-down expertise effects on action perception in sprinters using static images.
Athletes have been found to demonstrate a superior ability to detect subtle variations in dynamic displays (e.g., point-light displays and videos) depicting expert actions compared to non-athletes. The current study aimed to determine whether this advantage also exists when dynamic information is unavailable (i.e., using static images). Using a staircase procedure, two frames from a video depicting an athlete either walking (everyday action) or performing a sprint start (expert action) were presented, and athletes (sprinters) and non-athletes were asked to indicate whether the images were identical or different. We examined whether presenting the images sequentially (temporal task) or simultaneously (spatial task) influenced participants' discrimination performance. We predicted that the sprinters would outperform the non-sprinters in the spatial task as body postures could be compared directly but not in the temporal task due to larger representational momentum effects for athletes. Contrary to our hypotheses, the sprinters and non-sprinters performed similarly in all tasks and conditions. In line with the prediction that representational momentum may impair performance, participants' thresholds were lower for the spatial than the temporal task. However, post-hoc analysis suggested that this effect is likely to be better explained by a task order effect whereby participants who completed the temporal task first exhibited an advantage in the spatial task, while there were no performance differences for participants who completed the opposite task order. In sum, our results provide no evidence for the idea that motor expertise affects action perception (i.e., perceptual resonance) in a simple psychophysical task employing static images
Action Perception in Athletes : Expertise Facilitates Perceptual Discrimination
Open Access via the Sage AgreementPeer reviewedPublisher PD
Temporal-order judgement task suggests chronological action representations in motor experts and non-experts
Peer reviewedPostprintPublisher PD
Perceptual uncertainty and action consequences independently affect hand movements in a virtual environment
Supported by Leverhulme Trust Grant RPG-2017-232 awarded to CH and JH. The data are available online from the Open Science Framework: https://osf.io/vskxy/.Peer reviewedPublisher PD
Bimanual Grasping adheres to Weber’s Law
Acknowledgments Thomas Schenk was supported by grants from the German Research Foundation (Deutsche Forschungsgemeinschaft: DFG-SCHE 735/2-2 and DFG-SCHE 735/3-2) Funding The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Deutsche Forschungsgemeinschaft (grant numbers DFG-SCHE735/2-2, DFG-SCHE 735/3-2)Peer reviewedPublisher PD
The Holst Spin Foam Model via Cubulations
Spin foam models are an attempt for a covariant, or path integral formulation
of canonical loop quantum gravity. The construction of such models usually rely
on the Plebanski formulation of general relativity as a constrained BF theory
and is based on the discretization of the action on a simplicial triangulation,
which may be viewed as an ultraviolet regulator. The triangulation dependence
can be removed by means of group field theory techniques, which allows one to
sum over all triangulations. The main tasks for these models are the correct
quantum implementation of the Plebanski constraints, the existence of a
semiclassical sector implementing additional "Regge-like" constraints arising
from simplicial triangulations, and the definition of the physical inner
product of loop quantum gravity via group field theory. Here we propose a new
approach to tackle these issues stemming directly from the Holst action for
general relativity, which is also a proper starting point for canonical loop
quantum gravity. The discretization is performed by means of a "cubulation" of
the manifold rather than a triangulation. We give a direct interpretation of
the resulting spin foam model as a generating functional for the n-point
functions on the physical Hilbert space at finite regulator. This paper focuses
on ideas and tasks to be performed before the model can be taken seriously.
However, our analysis reveals some interesting features of this model: first,
the structure of its amplitudes differs from the standard spin foam models.
Second, the tetrad n-point functions admit a "Wick-like" structure. Third, the
restriction to simple representations does not automatically occur -- unless
one makes use of the time gauge, just as in the classical theory.Comment: 25 pages, 1 figure; v3: published version. arXiv admin note:
substantial text overlap with arXiv:0911.213
Loop quantum gravity: the first twenty five years
This is a review paper invited by the journal "Classical ad Quantum Gravity"
for a "Cluster Issue" on approaches to quantum gravity. I give a synthetic
presentation of loop gravity. I spell-out the aims of the theory and compare
the results obtained with the initial hopes that motivated the early interest
in this research direction. I give my own perspective on the status of the
program and attempt of a critical evaluation of its successes and limits.Comment: 24 pages, 3 figure
Integration of CT urography improves diagnostic confidence of 68Ga-PSMA-11 PET/CT in prostate cancer patients
Background: To prove the feasibility of integrating CT urography (CTU) into 68Ga-PSMA-11 PET/CT and to analyze the impact of CTU on assigning focal tracer accumulation in the ureteric space to either ureteric excretion or metastatic disease concerning topographic attribution and diagnostic confidence.
Methods: Ten prostate cancer patients who underwent 68Ga-PSMA-11 PET/CT including CTU because of biochemical relapse or known metastatic disease were retrospectively analyzed. CTU consisted of an excretory phase 10 min after injection of 80 mL iodinated contrast material. Ureter opacification at CTU was evaluated using the following score: 0, 0% opacification; 1, < 50%; 2, 50–99%; 3, 100%. Topographic attribution and confidence of topographic attribution of focal tracer accumulation in the ureteric space were separately assessed for 68Ga-PSMA-11 PET/CT without and with CTU. Diagnostic confidence was evaluated using the following score: 0, < 25% confidence; 1, 26–50%; 2, 51–75%; 3, 76–100%.
Results: At CTU, mean ureter opacification score was 2.6 ± 0.7. At 68Ga-PSMA-11 PET/CT without CTU, mean confidence of topographic attribution of focal tracer accumulation was 2.5 ± 0.7 in total and 2.6 ± 0.7 for metastatic disease. At 68Ga-PSMA-11 PET/CT with CTU, mean confidence of topographic attribution of focal areas of tracer accumulation was significantly higher with 2.9 ± 0.2 in total and 2.7 ± 0.9 for metastatic disease (p < 0.001). In 4 of 34 findings (12%) attribution to either ureteric excretion or metastatic disease was discrepant between 68Ga-PSMA-11 PET/CT without and with CTU (n.s).
Conclusions: Integration of CTU into 68Ga-PSMA-11 PET/CT is feasible and increases diagnostic confidence of assigning focal areas of tracer accumulation in the ureteric space to either metastatic disease or ureteric excretion
Dynamical parton distributions of the nucleon and very small-x physics
Utilizing recent DIS measurements (F_{2,L}) and data on dilepton and
high-E_{T} jet production we determine the dynamical parton distributions of
the nucleon generated radiatively from valence-like positive input
distributions at optimally chosen low resolution scales. These are compared
with `standard' distributions generated from positive input distributions at
some fixed and higher resolution scale. It is shown that up to the next to
leading order NLO(\bar{MS}, DIS) of perturbative QCD considered in this paper,
the uncertainties of the dynamical distributions are, as expected, smaller than
those of their standard counterparts. This holds true in particular in the
presently unexplored extremely small-x region relevant for evaluating ultrahigh
energy cross sections in astrophysical applications. It is noted that our new
dynamical distributions are compatible, within the presently determined
uncertainties, with previously determined dynamical parton distributions.Comment: 21 pages, 2 tables, 16 figures, v2: added Ref.[60], replaced Fig.
- …