143,507 research outputs found

    Amplitudes and Resonances from an Energy-Dependent Analysis of pbar+p -> pi+pi

    Full text link
    The amplitudes at a series of discrete energies obtained from a previuos analysis of pbar+p -> pi+pi have been used as input to a global energy- dependent analysis of data in the momentum range 360 - 1550 MeV/c. The results confirm the previous analysis and yield refined values for meson resonance parameters in this energy region.Comment: 8 pages, LaTex, 2 postscript figures, a reference is correcte

    Cut Size Statistics of Graph Bisection Heuristics

    Full text link
    We investigate the statistical properties of cut sizes generated by heuristic algorithms which solve approximately the graph bisection problem. On an ensemble of sparse random graphs, we find empirically that the distribution of the cut sizes found by ``local'' algorithms becomes peaked as the number of vertices in the graphs becomes large. Evidence is given that this distribution tends towards a Gaussian whose mean and variance scales linearly with the number of vertices of the graphs. Given the distribution of cut sizes associated with each heuristic, we provide a ranking procedure which takes into account both the quality of the solutions and the speed of the algorithms. This procedure is demonstrated for a selection of local graph bisection heuristics.Comment: 17 pages, 5 figures, submitted to SIAM Journal on Optimization also available at http://ipnweb.in2p3.fr/~martin

    Modelling heat transfer through a novel design of rotary kiln

    Get PDF
    A novel form of rotary kiln has been developed which confers advantages over conventional designs. Details are given of the main features of the kiln, along with an approach used to study its heat transfer characteristics when hot processing waste products into a lightweight synthetic aggregate for recycling in building materials. Computer aided finite element modelling was used to predict temperature profiles and heat fluxes involving non-linear properties of the exterior insulation materials and internal radiation effects. Observations are given comparing predicted temperatures for two different cross sectional shapes and with those measured in practice on a prototype novel kiln. Observations are also given on the methods of approach to the modelling

    Integrated circuit reliability testing

    Get PDF
    A technique is described for use in determining the reliability of microscopic conductors deposited on an uneven surface of an integrated circuit device. A wafer containing integrated circuit chips is formed with a test area having regions of different heights. At the time the conductors are formed on the chip areas of the wafer, an elongated serpentine assay conductor is deposited on the test area so the assay conductor extends over multiple steps between regions of different heights. Also, a first test conductor is deposited in the test area upon a uniform region of first height, and a second test conductor is deposited in the test area upon a uniform region of second height. The occurrence of high resistances at the steps between regions of different height is indicated by deriving the measured length of the serpentine conductor using the resistance measured between the ends of the serpentine conductor, and comparing that to the design length of the serpentine conductor. The percentage by which the measured length exceeds the design length, at which the integrated circuit will be discarded, depends on the required reliability of the integrated circuit

    Density-density functionals and effective potentials in many-body electronic structure calculations

    Full text link
    We demonstrate the existence of different density-density functionals designed to retain selected properties of the many-body ground state in a non-interacting solution starting from the standard density functional theory ground state. We focus on diffusion quantum Monte Carlo applications that require trial wave functions with optimal Fermion nodes. The theory is extensible and can be used to understand current practices in several electronic structure methods within a generalized density functional framework. The theory justifies and stimulates the search of optimal empirical density functionals and effective potentials for accurate calculations of the properties of real materials, but also cautions on the limits of their applicability. The concepts are tested and validated with a near-analytic model.Comment: five figure

    Expanded study of feasibility of measuring in-flight 747/JT9D loads, performance, clearance, and thermal data

    Get PDF
    The JT9D jet engine exhibits a TSFC loss of about 1 percent in the initial 50 flight cycles of a new engine. These early losses are caused by seal-wear induced opening of running clearances in the engine gas path. The causes of this seal wear have been identified as flight induced loads which deflect the engine cases and rotors, causing the rotating blades to rub against the seal surfaces, producing permanent clearance changes. The real level of flight loads encountered during airplane acceptance testing and revenue service and the engine's response in the dynamic flight environment were investigated. The feasibility of direct measurement of these flight loads and their effects by concurrent measurement of 747/JT9D propulsion system aerodynamic and inertia loads and the critical engine clearance and performance changes during 747 flight and ground operations was evaluated. A number of technical options were examined in relation to the total estimated program cost to facilitate selection of the most cost effective option. It is concluded that a flight test program meeting the overall objective of determining the levels of aerodynamic and inertia load levels to which the engine is exposed during the initial flight acceptance test and normal flight maneuvers is feasible and desirable. A specific recommended flight test program, based on the evaluation of cost effectiveness, is defined
    corecore