61 research outputs found

    The Role of TEC Family Kinases in Innate T Cell Development and Function: a Dissertation

    Get PDF
    The Tec family kinases Itk and Rlk have been previously shown to have an important role in signaling downstream of the T cell receptor [TCR]. Almost all of the work done in the past on these two kinases looked at their role in conventional αβ T cells, specifically CD4+ T cells. These studies demonstrated functions for Itk [primarily] and Rlk in T cell development, activation, and differentiation. However, despite the wealth of knowledge on conventional CD4+ T cells, prior to the work presented here little to no studies addressed the role of Tec family kinases on CD8+ or innate T cell development. My studies show a clear role for Itk [and in some cases Rlk] in innate T cell development; whether it be deprecating, in the case of innate CD8+ T cells or some subsets of γδ T cells, or beneficial, in the case of NKT cells. I show that Itk has a crucial role in conventional CD8+ T cell development, as absence of Itk [or Itk and Rlk] causes strongly reduced numbers of conventional CD8+ T cells and a vigorous enhancement of an innate-like CD8+ T cell population. In NKT cells, my work demonstrates that Itk [and to a lesser extent Rlk] is required for terminal maturation, survival, and cytokine secretion. Finally, on γδ T cells Itk is important in maintaining the Th1 cytokine secretion profile usually associated with these cells, and regulating the development of CD4+ or NK1.1+ γδ T cells. Taken together, this work clearly illustrates an important role for Tec family kinases in innate T cell development and function

    Tec kinase Itk in gammadeltaT cells is pivotal for controlling IgE production in vivo

    Get PDF
    In conventional alphabeta T cells, the Tec family tyrosine kinase Itk is required for signaling downstream of the T cell receptor (TCR). Itk also regulates alphabeta T cell development, lineage commitment, and effector function. A well established feature of Itk(-/-) mice is their inability to generate T helper type 2 (Th2) responses that produce IL-4, IL-5, and IL-13; yet these mice have spontaneously elevated levels of serum IgE and increased numbers of germinal center B cells. Here we show that the source of this phenotype is gammadelta T cells, as normal IgE levels are observed in Itk(-/-)Tcrd(-/-) mice. When stimulated through the gammadelta TCR, Itk(-/-) gammadelta T cells produce high levels of Th2 cytokines, but diminished IFNgamma. In addition, activated Itk(-/-) gammadelta T cells up-regulate costimulatory molecules important for B cell help, suggesting that they may directly promote B cell activation and Ig class switching. Furthermore, we find that gammadelta T cells numbers are increased in Itk(-/-) mice, most notably the Vgamma1.1(+)Vdelta6.3(+) subset that represents the dominant population of gammadelta NKT cells. Itk(-/-) gammadelta NKT cells also have increased expression of PLZF, a transcription factor required for alphabeta NKT cells, indicating a common molecular program between alphabeta and gammadelta NKT cell lineages. Together, these data indicate that Itk signaling regulates gammadelta T cell lineage development and effector function and is required to control IgE production in vivo

    Altered Development of NKT Cells, γδ T Cells, CD8 T Cells and NK Cells in a PLZF Deficient Patient

    Get PDF
    In mice, the transcription factor, PLZF, controls the development of effector functions in invariant NKT cells and a subset of NKT cell-like, γδ T cells. Here, we show that in human lymphocytes, in addition to invariant NKT cells, PLZF was also expressed in a large percentage of CD8+ and CD4+ T cells. Furthermore, PLZF was also found to be expressed in all γδ T cells and in all NK cells. Importantly, we show that in a donor lacking functional PLZF, all of these various lymphocyte populations were altered. Therefore, in contrast to mice, PLZF appears to control the development and/or function of a wide variety of human lymphocytes that represent more than 10% of the total PBMCs. Interestingly, the PLZF-expressing CD8+ T cell population was found to be expanded in the peripheral blood of patients with metastatic melanoma but was greatly diminished in patients with autoimmune disease

    The Tec kinases Itk and Rlk regulate NKT cell maturation, cytokine production, and survival

    No full text
    The Tec kinases Itk and Rlk are required for efficient positive selection of conventional CD4+ and CD8+ T cells in the thymus. In contrast, recent studies have shown that these Tec kinases are dispensable for the development of CD8+ T cells with characteristics of innate T cells. These findings raise questions about the potential role of Itk and Rlk in NKT cell development, because NKT cells represent a subset of innate T cells. To address this issue, we examined invariant NKT cells in Itk-/- and Itk/Rlk-/- mice. We find, as has been reported previously, that Itk-/- mice have reduced numbers of NKT cells with a predominantly immature phenotype. We further show that this defect is greatly exacerbated in the absence of both Itk and Rlk, leading to a 7-fold reduction in invariant NKT cell numbers in the thymus of Itk/Rlk-/- mice and a more severe block in NKT cell maturation. Splenic Itk-/- and Itk/Rlk-/- NKT cells are also functionally defective, because they produce little to no cytokine following in vivo activation. Tec kinase-deficient NKT cells also show enhanced cell death in the spleen. These defects correlate with greatly diminished expression of CD122, the IL-2R/IL-15R beta-chain, and impaired expression of the T-box transcription factor, T-bet. These data indicate that the Tec kinases Itk and Rlk provide important signals for terminal maturation, efficient cytokine production, and peripheral survival of NKT cells

    The Tec Kinases Itk and Rlk Regulate NKT Cell Maturation, Cytokine Production, and Survival

    No full text

    Targeting KIR Blockade in Multiple Myeloma: Trouble in Checkpoint Paradise?

    No full text

    Itk and Th2 responses: action but no reaction

    No full text
    The Tec family tyrosine kinase, Itk, was initially characterized as a crucial component of T-cell receptor signaling pathways resulting in phospholipase C-gamma1 activation and actin polymerization. In 1999, a seminal report by Fowell, Locksley and colleagues demonstrated that, in CD4+ T cells, Itk-dependent signals are differentially required for T-helper (Th)2 versus Th1 differentiation and effector function. These findings launched a series of in vitro and in vivo studies addressing the molecular defects of Itk-/- CD4+ T cells, and the impaired immune responses of intact Itk-deficient mice. While demonstrating a bias against Th2 differentiation, overall these experiments have indicated that the most significant failing is an inability of Itk-/- CD4+ T cells to produce Th2 cytokines in a recall response, rather than an absolute defect in Th2 differentiation by T cells lacking Itk. In this review, we discuss the pathways by which Itk might impact the differentiation of Th cells

    Tec kinases in T cell and mast cell signaling

    No full text
    The Tec family of tyrosine kinases consists of five members (Itk, Rlk, Tec, Btk, and Bmx) that are expressed predominantly in hematopoietic cells. The exceptions, Tec and Bmx, are also found in endothelial cells. Tec kinases constitute the second largest family of cytoplasmic protein tyrosine kinases. While B cells express Btk and Tec, and T cells express Itk, Rlk, and Tec, all four of these kinases (Btk, Itk, Rlk, and Tec) can be detected in mast cells. This chapter will focus on the biochemical and cell biological data that have been accumulated regarding Itk, Rlk, Btk, and Tec. In particular, distinctions between the different Tec kinase family members will be highlighted, with a goal of providing insight into the unique functions of each kinase. The known functions of Tec kinases in T cell and mast cell signaling will then be described, with a particular focus on T cell receptor and mast cell Fc epsilon RI signaling pathways

    Immunotherapeutic Development of a Tri-Specific NK Cell Engager Recognizing BCMA

    No full text
    Chemotherapy-refractive multiple myeloma (MM) is serious and life-threatening, and better treatments are urgently needed. BCMA is a prominent marker on the cell surface of MM cells, rendering it an accepted target for antibody therapy. Considering that MM is a liquid tumor and immunotherapy has enjoyed success against leukemia, we devise an approach designed to enhance NK cell activity against MM. Ordinarily, NK cells function to naturally survey the body and eliminate malignant cells. Our platform approach is designed to enhance NK function. A tri-specific immune-engaging TriKE is manufactured, consisting of a camelid nanobody VHH antibody fragment recognizing CD16 expressed on NK cells and an scFv antibody fragment specifically recognizing BCMA. These two fragments are crosslinked by the human cytokine interleukin-15 (IL-15) known to have prominent activating effects on NK cells. The molecule, when tested by flow cytometry, shows activation of NK cells in their numbers and activity. Additionally, the molecule demonstrates anti-cancer effects in an in vivo xenograft model of human MM. We believe that the drug will have the capability of enhancing NK cells at the site of the immune synapse, i.e., the effector:target cell interface, and this will promote cancer remissions

    The Tec kinases Itk and Rlk regulate conventional versus innate T-cell development

    No full text
    Tec family kinases are important components of antigen receptor signaling pathways in B cells, T cells, and mast cells. In T cells, three members of this family, inducible T-cell kinase (Itk), resting lymphocyte kinase (Rlk), and Tec, are expressed. In the absence of Itk and Rlk, T-cell receptor signaling is impaired, with defects in mitogen-activated protein kinase activation, Ca(2+) mobilization, and actin polymerization. During T-cell development in the thymus, no role has been found for these kinases in the CD4(+) versus CD8(+) T-cell lineage decision; however, several studies indicate that Itk and Rlk contribute to the signaling leading to positive and negative selection. In addition, we and others have recently described an important role for Itk and Rlk in the development of conventional as opposed to innate CD4(+) and CD8(+) T cells. Natural killer T and gammadelta T-cell populations are also altered in Itk- and Rlk/Itk-deficient mice. These findings strongly suggest that the strength of T-cell receptor signaling during development determines whether T cells mature into conventional versus innate lymphocyte lineages. This lineage decision is also influenced by signaling via signaling lymphocytic activation molecule (SLAM) family receptors. Here we discuss these two signaling pathways that each contribute to conventional versus innate T-cell lineage commitment
    • …
    corecore