20 research outputs found

    Tracking ferroelectric domain formation during epitaxial growth of PbTiO3 films

    No full text
    The arrangement of domains and domain walls is a crucial factor in determining the functional properties of ferroelectric materials. Here, we track the ferroelectric domain formation mechanism in ultrathin PbTiO3 films in real time during epitaxial growth using in-situ optical second harmonic generation (ISHG). In combination with complementary exsitu piezoresponse force microscopy and SHG imaging, we unambiguously identify the tensile-epitaxial-strain-induced partial conversion of out-of-plane-polarized c-domains into in-plane-polarized a-domains. We further show that in the strongly compressive epitaxial regime the c-to-a conversion can be shifted to the early stage of the growth to favor a remarkable randomization in the distribution of a- and c-domains. This unprecedented access to the domain-formation dynamics constitutes an important step towards deterministic domain architectures in technologically relevant ultrathin ferroelectrics which, in turn, is valuable for the development of functional ferroelectric and piezoelectric structures.ISSN:0003-6951ISSN:1077-311

    Imaging ferroelectric domains with a single-spin scanning quantum sensor

    No full text
    The ability to sensitively image electric fields is important for understanding many nanoelectronic phenomena, including charge accumulation at surfaces and interfaces and field distributions in active electronic devices. A particularly exciting application is the visualization of domain patterns in ferroelectric and nanoferroic materials, owing to their potential in computing and data storage. Here, we use a scanning nitrogen-vacancy (NV) microscope, well known for its use in magnetometry, to image domain patterns in piezoelectric (Pb[Zr0.2Ti0.8]O3) and improper ferroelectric (YMnO3) materials through their electric fields. Electric field detection is enabled by measuring the Stark shift of the NV spin using a gradiometric detection scheme. Analysis of the electric field maps allows us to discriminate between different types of surface charge distributions, as well as to reconstruct maps of the three-dimensional electric field vector and charge density. The ability to measure both stray electric and magnetic fields under ambient conditions opens opportunities for the study of multiferroic and multifunctional materials and devices.ISSN:1745-2473ISSN:1745-248

    Multilevel polarization switching in ferroelectric thin films

    No full text
    Ferroic order is characterized by hystereses with two remanent states and therefore inherently binary. The increasing interest in materials showing non-discrete responses, however, calls for a paradigm shift towards continuously tunable remanent ferroic states. Device integration for oxide nanoelectronics furthermore requires this tunability at the nanoscale. Here we demonstrate that we can arbitrarily set the remanent ferroelectric polarization at nanometric dimensions. We accomplish this in ultrathin epitaxial PbZr0.52Ti0.48O3 films featuring a dense pattern of decoupled nanometric 180° domains with a broad coercive-field distribution. This multilevel switching is achieved by driving the system towards the instability at the morphotropic phase boundary. The phase competition near this boundary in combination with epitaxial strain increases the responsiveness to external stimuli and unlocks new degrees of freedom to nano-control the polarization. We highlight the technological benefits of non-binary switching by demonstrating a quasi-continuous tunability of the non-linear optical response and of tunnel electroresistance.ISSN:2041-172

    Novel diffraction strategies to unravel hidden order in ferroelectric thin films

    No full text
    ISSN:1662-534XISSN:1662-535

    In-situ monitoring of epitaxial ferroelectric thin-film growth

    No full text
    In ferroelectric thin films, the polarization state and the domain configuration define the macroscopic ferroelectric properties such as the switching dynamics. Engineering of the ferroelectric domain configuration during synthesis is in permanent evolution and can be achieved by a range of approaches, extending from epitaxial strain tuning over electrostatic environment control to the influence of interface atomic termination. Exotic polar states are now designed in the technologically relevant ultrathin regime. The promise of energy-efficient devices based on ultrathin ferroelectric films depends on the ability to create, probe, and manipulate polar states in ever more complex epitaxial architectures. Because most ferroelectric oxides exhibit ferroelectricity during the epitaxial deposition process, the direct access to the polarization emergence and its evolution during the growth process, beyond the realm of existing structuralin situdiagnostic tools, is becoming of paramount importance. We review the recent progress in the field of monitoring polar states with an emphasis on the non-invasive probes allowing investigations of polarization during the thin film growth of ferroelectric oxides. A particular importance is given to optical second harmonic generationin situ. The ability to determine the net polarization and domain configuration of ultrathin films and multilayers during the growth of multilayers brings new insights towards a better understanding of the physics of ultrathin ferroelectrics and further control of ferroelectric-based heterostructures for devices.ISSN:0953-8984ISSN:1361-648

    Nonvolatile voltage-tunable ferroelectric-superconducting quantum interference memory devices

    No full text
    Superconductivity serves as a unique solid-state platform for electron interference at a device-relevant lengthscale, which is essential for quantum information and sensing technologies. As opposed to semiconducting transistors that are operated by voltage biasing at the nanometer scale, superconductive quantum devices cannot sustain voltage and are operated with magnetic fields, which impose a large device footprint, hindering miniaturization and scalability. Here, we introduce a system of superconducting materials and devices that have a common interface with a ferroelectric layer. An amorphous superconductor was chosen for reducing substrate-induced misfit strain and for allowing low-temperature growth. The common quantum pseudowavefunction of the superconducting electrons was controlled by the nonvolatile switchable polarization of the ferroelectric by means of voltage biasing. A controllable change of 21% in the critical temperature was demonstrated for a continuous film geometry. Moreover, a controllable change of 54% in the switching current of a superconducting quantum interference device was demonstrated. The ability to voltage bias superconducting devices together with the nonvolatile nature of this system paves the way to quantum-based memory devices.ISSN:0003-6951ISSN:1077-311

    Controlling the Polarization in Ferroelectric PZT Films via the Epitaxial Growth Conditions

    No full text
    The integration of thin-film ferroelectrics with reliable properties into oxide electronics requires accomplishing deterministic polarization states. Since ferroelectricity emerges during thin-film synthesis already, it is essential to elucidate how the interplay of different growth parameters affects the polarization. Here, the polarization of fully strained Pb(Zr₀.₂Ti₀.₈)O₃ (PZT) films is accessed in situ, during epitaxial growth. Surprisingly, it is found that the orientation of the out-of-plane polarization during growth may differ from the one after growth completion and it strongly depends on the substrate temperature and the oxygen partial pressure. Increasing the growth temperature and/or the oxygen partial pressure favors a uniform downward-oriented polarization, independent of the direction of polarization during growth. Specifically, for films with an emerging upward-oriented polarization, a polarization reversal and a downward-oriented polarization after cool-down is observed. The in situ measurements obtained by optical second harmonic generation (SHG) in conjunction with ex situ piezoresponse force microscopy (PFM) and X-ray diffraction (XRD) measurements point to the temperature- and pressure-dependent formation of a charged Pb defect gradient toward the film surface as the responsible mechanism for the polarization reorientation.ISSN:1616-3028ISSN:1616-301

    Monitoring Electrical Biasing of Pb(Zr0.2Ti0.8)O3 Ferroelectric Thin Films In Situ by DPC-STEM Imaging

    No full text
    Increased data storage densities are required for the next generation of nonvolatile random access memories and data storage devices based on ferroelectric materials. Yet, with intensified miniaturization, these devices face a loss of their ferroelectric properties. Therefore, a full microscopic understanding of the impact of the nanoscale defects on the ferroelectric switching dynamics is crucial. However, collecting real-time data at the atomic and nanoscale remains very challenging. In this work, we explore the ferroelectric response of a Pb(Zr0.2Ti0.8)O3 thin film ferroelectric capacitor to electrical biasing in situ in the transmission electron microscope. Using a combination of high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and differential phase contrast (DPC)-STEM imaging we unveil the structural and polarization state of the ferroelectric thin film, integrated into a capacitor architecture, before and during biasing. Thus, we can correlate real-time changes in the DPC signal with the presence of misfit dislocations and ferroelastic domains. A reduction in the domain wall velocity of 24% is measured in defective regions of the film when compared to predominantly defect-free regions

    Monitoring Electrical Biasing of Pb(Zr0.2Ti0.8)O3 Ferroelectric Thin Films In Situ by DPC-STEM Imaging

    No full text
    Increased data storage densities are required for the next generation of nonvolatile random access memories and data storage devices based on ferroelectric materials. Yet, with intensified miniaturization, these devices face a loss of their ferroelectric properties. Therefore, a full microscopic understanding of the impact of the nanoscale defects on the ferroelectric switching dynamics is crucial. However, collecting real-time data at the atomic and nanoscale remains very challenging. In this work, we explore the ferroelectric response of a Pb(Zr0.2Ti0.8)O3 thin film ferroelectric capacitor to electrical biasing in situ in the transmission electron microscope. Using a combination of high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and differential phase contrast (DPC)-STEM imaging we unveil the structural and polarization state of the ferroelectric thin film, integrated into a capacitor architecture, before and during biasing. Thus, we can correlate real-time changes in the DPC signal with the presence of misfit dislocations and ferroelastic domains. A reduction in the domain wall velocity of 24% is measured in defective regions of the film when compared to predominantly defect-free regions.ISSN:1996-194

    Ferroelectric Thin Films for Oxide Electronics

    No full text
    Ferroelectric materials have set in motion numerous ultralow-energy-consuming device concepts that can be integrated into state-of-the-art complementary metal–oxide–semiconductor technology. Their nonvolatile, spontaneous electric polarization makes them promising candidates to control functionalities at the nanoscale with energy-efficient electric fields only. In this spotlight article, we start with a brief introduction to ferroelectric materials, the challenges involving the design of thin films and review the state-of-the-art of their integration into various electronic applications. Revolutionary in situ and operando diagnostic tools allowing the monitoring of the technology-relevant polarization state during the material design, or its operation will be detailed. Concepts such as chiral states in ferroelectrics and neuromorphic-type switching will be addressed to provide a comprehensive view on the evolution of ferroelectric states for the next generation of low-energy-consuming electronics. Finally, we discuss the most recent developments in the field, including the emergence of ferroelectricity at the nanoscale and in two-dimensional systems.ISSN:2637-611
    corecore