4 research outputs found

    Sarcopenia and Liver Cirrhosis—Comparison of the European Working Group on Sarcopenia Criteria 2010 and 2019

    No full text
    The European Working group on Sarcopenia in Older People recently updated the diagnostic criteria for sarcopenia. It is yet unclear how these modified criteria influence the rate of diagnosis in high risk populations, such as liver cirrhosis. We therefore assessed if the new diagnostic criteria for sarcopenia impacts on sarcopenia prevalence in liver cirrhosis. Within two years 114 cirrhotic patients were prospectively enrolled in the study. Sarcopenia was determined by muscle strength (handgrip strength), muscle mass (lumbal muscle index) and muscle performance (gait speed). Using the 2019 definition, the rate of pre-sarcopenia was significantly lower (30.7% versus 3.5%) due to the different starting points (2010 muscle mass, 2019 muscle strength) and cut-off values (muscle strength). The change in diagnostic criteria for sarcopenia drastically influences the rate of pre-sarcopenia diagnosis in cirrhotics. To evaluate, which diagnostic criteria should be chosen to diagnose sarcopenia in liver cirrhosis patients, prospective studies are needed

    A prospective development study of software-guided radio-frequency ablation of primary and secondary liver tumors: Clinical intervention modelling, planning and proof for ablation cancer treatment (ClinicIMPPACT)

    No full text
    Introduction: Radio-frequency ablation (RFA) is a promising minimal-invasive treatment option for early liver cancer, however monitoring or predicting the size of the resulting tissue necrosis during the RFA-procedure is a challenging task, potentially resulting in a significant rate of under- or over treatments. Currently there is no reliable lesion size prediction method commercially available. Objectives: ClinicIMPPACT is designed as multicenter-, prospective-, non-randomized clinical trial to evaluate the accuracy and efficiency of innovative planning and simulation software. 60 patients with early liver cancer will be included at four European clinical institutions and treated with the same RFA system. The preinterventional imaging datasets will be used for computational planning of the RFA treatment. All ablations will be simulated simultaneously to the actual RFA procedure, using the software environment developed in this project. The primary outcome measure is the comparison of the simulated ablation zones with the true lesions shown in follow-up imaging after one month, to assess accuracy of the lesion prediction. Discussion: This unique multicenter clinical trial aims at the clinical integration of a dedicated software solution to accurately predict lesion size and shape after radiofrequency ablation of liver tumors. Accelerated and optimized workflow integration, and real-time intraoperative image processing, as well as inclusion of patient specific information, e.g. organ perfusion and registration of the real RFA needle position might make the introduced software a powerful tool for interventional radiologists to optimize patient outcomes
    corecore