2 research outputs found

    The Oxford Cold Driven Shock Tube (CDST) for fuel spray and chemical kinetics research

    Get PDF
    A new reflected shock tube facility, the Cold Driven Shock Tube (CDST), has been designed, built and commissioned at the University of Oxford for investigating IC engine fuel spray physics and chemistry. Fuel spray and chemical kinetics research requires its test gas to be at engine representative pressures and temperatures. A reflected shock tube generates these extreme conditions in the test gas for short durations (order milliseconds) by transiently compressing it through a reflected shock process. The CDST has been designed for a nominal test condition of 6 MPa, 900 K slug of air (300 mm long) for a steady test duration of 3 ms. The facility is capable of studying reacting mixtures at higher pressures (up to 150 bar) than other current facilities, whilst still having comparable size (100 mm diameter) and optical access to interrogate the fuel spray with high speed imaging and laser diagnostics. Future data gathered will support fundamental research for IC engine and fuel technologies leading to even higher thermal efficiency along with a reduction in emissions, and provide high quality, repeatable validation data for advanced model development. This paper describes the scope of the facility's capabilities, aspects of its design, details of the instrumentation, and the axially mounted single hole diesel injector

    Cycle-to-cycle variation analysis of two-colour PLIF temperature measurements calibrated with laser induced grating spectroscopy in a firing GDI engine

    No full text
    In-cylinder temperatures and their cyclic variations strongly influence many aspects of internal combustion engine operation, from chemical reaction rates determining the production of NOx and particulate matter to the tendency for auto-ignition leading to knock in spark ignition engines. Spatially resolved measurements of temperature can provide insights into such processes and enable validation of Computational Fluid Dynamics simulations used to model engine performance and guide engine design. This work uses a combination of Two-Colour Planar Laser Induced Fluorescence (TC-PLIF) and Laser Induced Grating Spectroscopy (LIGS) to measure the in-cylinder temperature distributions of a firing optically accessible spark ignition engine. TC-PLIF performs 2-D temperature measurements using fluorescence emission in two different wavelength bands but requires calibration under conditions of known temperature, pressure and composition. Here the TC-PLIF technique is calibrated in-situ using high precision (<1%) LIGS point measurements. Temperature distributions were recorded during the compression stroke for fired operation with Direct Injection and with Plenum Fuel Injection of three two-component fuels containing toluene and iso-octane. Temperature inhomogeneity was observed for all fuels and injection strategies, with mm-scale regions having temperatures up to 10% higher than the local environment. Charge cooling of 3% due to direct injection was resolved. Proper Orthogonal Decomposition (POD) was used to quantify the cycle-to-cycle variation of the temperature data. Low-order POD modes featured most of the cyclic variation in temperature and the corresponding mode coefficients were used to investigate correlations with combustion analysis, fuel injection strategies and toluene content of the fuel. Additionally, the low-order POD mode coefficients provided an opportunity to identify cycles containing local hotspots or outlier measurements
    corecore