1,480 research outputs found

    The Predicting Tree Growth App: an algorithmic approach to modelling individual tree growth

    Get PDF
    PredictingTreeGrowth is free and open-source application software written in Python 3.7 that allows easy and fast development of predictive models using the Recurrent Neural Network (RNN)/Long Short-Term Memory (LSTM) framework. RNNs have an upgraded architecture able to capture tree growth mechanisms related to time ordering and size dependence. The motivation for this App is to demystify the use of Machine Learning algorithms and allow accessibility of Machine Learning algorithms by the scientific community. Its simple graphical user interface (GUI) provides straightforward tools for building predictive models with the RNN algorithm.Fil: Magalhaes, Juliana G. de S.. University of British Columbia; CanadáFil: Polinko, Adam P.. Mississippi State University.; Estados UnidosFil: Amoroso, Mariano Martin. Universidad Nacional de Río Negro. Sede Andina. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kohli, Gursimran S.. University Fraser Simon; CanadáFil: Larson, Bruce C.. University of British Columbia; Canad

    Integrated whole transcriptome and DNA methylation analysis identifies gene networks specific to late-onset Alzheimer’s disease

    Get PDF
    Previous transcriptome studies observed disrupted cellular processes in late-onset Alzheimer\u27s disease (LOAD), yet it is unclear whether these changes are specific to LOAD, or are common to general neurodegeneration. In this study, we address this question by examining transcription in LOAD and comparing it to cognitively normal controls and a cohort of disease controls. Differential transcription was examined using RNA-seq, which allows for the examination of protein coding genes, non-coding RNAs, and splicing. Significant transcription differences specific to LOAD were observed in five genes: C10orf105, DIO2, a lincRNA, RARRES3, and WIF1. These findings were replicated in two independent publicly available microarray data sets. Network analyses, performed on 2,504 genes with moderate transcription differences in LOAD, reveal that these genes aggregate into seven networks. Two networks involved in myelination and innate immune response specifically correlated to LOAD. FRMD4B and ST18, hub genes within the myelination network, were previously implicated in LOAD. Of the five significant genes, WIF1 and RARRES3 are directly implicated in the myelination process; the other three genes are located within the network. LOAD specific changes in DNA methylation were located throughout the genome and substantial changes in methylation were identified within the myelination network. Splicing differences specific to LOAD were observed across the genome and were decreased in all seven networks. DNA methylation had reduced influence on transcription within LOAD in the myelination network when compared to both controls. These results hint at the molecular underpinnings of LOAD and indicate several key processes, genes, and networks specific to the disease

    A measurement of the W boson mass using large rapidity electrons

    Get PDF
    We present a measurement of the W boson mass using data collected by the D0 experiment at the Fermilab Tevatron during 1994--1995. We identify W bosons by their decays to e-nu final states where the electron is detected in a forward calorimeter. We extract the W boson mass, Mw, by fitting the transverse mass and transverse electron and neutrino momentum spectra from a sample of 11,089 W -> e nu decay candidates. We use a sample of 1,687 dielectron events, mostly due to Z -> ee decays, to constrain our model of the detector response. Using the forward calorimeter data, we measure Mw = 80.691 +- 0.227 GeV. Combining the forward calorimeter measurements with our previously published central calorimeter results, we obtain Mw = 80.482 +- 0.091 GeV

    Differential Production Cross Section of Z Bosons as a Function of Transverse Momentum at sqrt{s}=1.8 TeV

    Get PDF
    We present a measurement of the transverse momentum distribution of Z bosons produced in ppbar collisions at sqrt{s}=1.8 TeV using data collected by the D0 experiment at the Fermilab Tevatron Collider during 1994--1996. We find good agreement between our data and a current resummation calculation. We also use our data to extract values of the non-perturbative parameters for a particular version of the resummation formalism, obtaining significantly more precise values than previous determinations.Comment: 10 pages, 2 figures, submitted to Phys. Rev. Letters v2 has margin error correcte

    Direct Measurement of the Top Quark Mass at D0

    Full text link
    We determine the top quark mass m_t using t-tbar pairs produced in the D0 detector by \sqrt{s} = 1.8 TeV p-pbar collisions in a 125 pb^-1 exposure at the Fermilab Tevatron. We make a two constraint fit to m_t in t-tbar -> b W^+bbar W^- final states with one W boson decaying to q-qbar and the other to e-nu or mu-nu. Likelihood fits to the data yield m_t(l+jets) = 173.3 +- 5.6 (stat) +- 5.5 (syst) GeV/c^2. When this result is combined with an analysis of events in which both W bosons decay into leptons, we obtain m_t = 172.1 +- 5.2 (stat) +- 4.9 (syst) GeV/c^2. An alternate analysis, using three constraint fits to fixed top quark masses, gives m_t(l+jets) = 176.0 +- 7.9 (stat) +- 4.8 (syst) GeV/C^2, consistent with the above result. Studies of kinematic distributions of the top quark candidates are also presented.Comment: 43 pages, 53 figures, 33 tables. RevTeX. Submitted to Phys. Rev.

    Improved W boson mass measurement with the D0 detector

    Get PDF
    We have measured the W boson mass using the D0 detector and a data sample of 82 pb^-1 from the Tevatron collider. This measurement used W -> e nu decays, where the electron is close to a boundary of a central electromagnetic calorimeter module. Such 'edge' electrons have not been used in any previous D0 analysis, and represent a 14% increase in the W boson sample size. For these electrons, new response and resolution parameters are determined, and revised backgrounds and underlying event energy flow measurements are made. When the current measurement is combined with previous D0 W boson mass measurements, we obtain M_W = 80.483 +/- 0.084 GeV. The 8% improvement from the previous D0 measurement is primarily due to the improved determination of the response parameters for non-edge electrons using the sample of Z bosons with non-edge and edge electrons.Comment: submitted to Phys. Rev. D; 20 pages, 18 figures, 9 table

    Measurement of the WW Boson Mass

    Full text link
    A measurement of the mass of the WW boson is presented based on a sample of 5982 WeνW \rightarrow e \nu decays observed in ppp\overline{p} collisions at s\sqrt{s} = 1.8~TeV with the D\O\ detector during the 1992--1993 run. From a fit to the transverse mass spectrum, combined with measurements of the ZZ boson mass, the WW boson mass is measured to be MW=80.350±0.140(stat.)±0.165(syst.)±0.160(scale)GeV/c2M_W = 80.350 \pm 0.140 (stat.) \pm 0.165 (syst.) \pm 0.160 (scale) GeV/c^2.Comment: 12 pages, LaTex, style Revtex, including 3 postscript figures (submitted to PRL

    Measurements of branching fraction ratios and CP-asymmetries in suppressed B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^- decays

    Get PDF
    We report the first reconstruction in hadron collisions of the suppressed decays B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^-, sensitive to the CKM phase gamma, using data from 7 fb^-1 of integrated luminosity collected by the CDF II detector at the Tevatron collider. We reconstruct a signal for the B^- -> D(-> K^+ pi^-)K^- suppressed mode with a significance of 3.2 standard deviations, and measure the ratios of the suppressed to favored branching fractions R(K) = [22.0 \pm 8.6(stat)\pm 2.6(syst)]\times 10^-3, R^+(K) = [42.6\pm 13.7(stat)\pm 2.8(syst)]\times 10^-3, R^-(K)= [3.8\pm 10.3(stat)\pm 2.7(syst]\times 10^-3, as well as the direct CP-violating asymmetry A(K) = -0.82\pm 0.44(stat)\pm 0.09(syst) of this mode. Corresponding quantities for B^- -> D(-> K^+ pi^-)pi^- decay are also reported.Comment: 8 pages, 1 figure, accepted by Phys.Rev.D Rapid Communications for Publicatio
    corecore