302 research outputs found
Lead isotope evidence for a young formation age of the EarthâMoon system
AbstractA model of a giant impact between two planetary bodies is widely accepted to account for the EarthâMoon system. Despite the importance of this event for understanding early Earth evolution and the inventory of Earth's volatiles critical to life, the timing of the impact is poorly constrained. We explore a data-based, two-stage Pb isotope evolution model in which the timing of the loss of volatile Pb relative to refractory U in the aftermath of the giant impact is faithfully recorded in the Pb isotopes of bulk silicate Earth. Constraining the first stage Pb isotopic evolution permits calculating an age range of 4.426â4.417 Ga for the inflection in the U/Pb ratio related to the giant impact. This model is supported by Pb isotope data for angrite meteorites that we use to demonstrate volatility-driven, planetary-scale Pb loss was an efficient process during the early Solar System. The revised age is âŒ100 Myr younger than most current estimates for the age of the Moon but fully consistent with recent ages for lunar ferroan anorthosite and the timing of Earth's first crust inferred from the terrestrial zircon record. The estimated loss of âŒ98% of terrestrial Pb relative to the Solar System bulk composition by the end of the Moon-forming process implies that the current inventory of Earth's most volatile elements, including water, arrived during post-impact veneering by volatile-rich bodies
Major element and isotope geochemistry (Sr, Nd and Hf) of mantle derived peridotites, carbonatites and kimberlites from Canada and Greeland; insights into mantle dynamics
Nous avons étudié la composition en éléments majeurs d'une suite de péridotites provenant de la marge nord du craton Archéen de l'ouest du Groenland, ainsi que la composition isotopique (Sr, Nd et Hf) de kimberlites et de carbonatites de l'est du Canada et du sud-ouest du Groenland.
Nos résultats indiquent que le manteau lithosphérique sous la région de Sarfartoq de l'Ouest du Groenland a une épaisseur d'environ 225 km et est constitué d'assemblages réfractaires d'harzburgites et de lherzolites (nombre Mg de l'olivine >0.9). Contrairement aux péridotites du craton de Kaapvaal (Afrique du Sud), les péridotites de la région de Sarfartoq ne sont pas enrichies en OPX et montrent donc plus d'affinités avec les péridotites de l'Est du Groenland (Wiedemann Fjord), de l'ßle de Somerset (arctique canadien) et de Tanzanie. L'étude détaillée de la composition des différentes phases minérales des péridotites suggÚre que le manteau lithosphérique sous la région de Sarfartoq soit stratifié comme suit: (1) une couche (70-180 km), caractérisée par une stratification interne, composée de harzburgites (avec ou sans grenats) non déformées, et (2) une couche (180-225 km) composée de lherzolites fertiles (avec CPX) porphyroclastiques. La stratification interne observée dans la couche de harzburgites non déformées (70-180 km) est reflétée par une augmentation de fertilité (par exemple diminution de l'abondance d'olivine et contenu inférieur en fostérite) avec la profondeur. La nature abrupte de la stratification semble indiquer que la formation de la racine lithosphérique s'est effectuée en au moins deux stades.
La composition isotopique du Sr de cristaux d'apatite et de carbonate provenant de l'intrusion alcaline de Sarfartoq, Groenland, a été mesurée avec l'aide d'un systÚme d'ablation laser couplé à un MC-ICP-MS. Cent sept analyses montrent des rapports 87Sr/86Sr variant de -0.7025 à -0.7031. Cette variation du rapport 87Sr/86Sr (-0.0006) est largement supérieure à la reproductibilité externe de la méthode (-0.000047; 2a). L'ampleur de l'intervalle des valeurs 87Sr/86Sr suggÚre que l'apatite et le carbonate ont précipité dans des conditions de déséquilibre. Il est possible que les variations isotopiques observées à l'échelle centimétrique reflÚtent des processus d'ordre régionaux, comme par exemple le mélange de magma carbonate provenant de différentes sources mantelliques ou, alternativement, un domaine mantellique hétérogÚne. Cette technique analytique fournit une approche rapide et pertinente pour déterminer l'ampleur de l'hétérogénéité isotopique dans un échantillon ou parmi différents minéraux, avec la précision analytique approchant cela obtenu par méthode TIMS conventionnelles.
L'analyse des isotopes de l'Hf et les ùges U-Pb de carbonatites et kimberlites provenant du Canada et Groenland, y compris la plus ancienne carbonatite connue (3 Ga), indique que ces magmas proviennent d'une source mantellique enrichie. Ce nouveau domaine mantellique, caractérisé par une composition isotopique de l'Hf non radiogénique et préservé dans le manteau profond, peu possiblement boucler le bilan de masse terrestre pour l'Hf et le Nd. Nos résultats indiquent que le manteau terrestre Archéen montrait une hétérogénéité isotopique (surtout pour l'Hf) beaucoup plus importante que le manteau actuel tel qu'échantillonné par les basaltes de types MORB et OIB. Cette hétérogénéité isotopique est semblable à l'hétérogénéité caractérisant les corps planétaires sans convection mantellique comme Mars et la Lune, et peut représenter un régime transitoire hérité de la differentiation initiale de la Terre. Notre étude confirme donc qu'une telle hétérogénéité était toujours présente aux environ de 3 Ga, mais plus élusive dans les roches juvéniles d'ùge <2.7 Ga. Les nouvelles données isotopiques de l'Hf ici présentées favorisent une source et origine communes pour les carbonatites, kimberlites et certains basaltes océaniques
Probing the Protosolar Disk Using Dust Filtering at Gaps in the Early Solar System
Jupiter and Saturn formed early, before the gas disk dispersed. The presence
of gap-opening planets affects the dynamics of the gas and embedded solids and
halts the inward drift of grains above a certain size. A drift barrier can
explain the absence of calcium aluminium rich inclusions (CAIs) in chondrites
originating from parent bodies that accreted in the inner solar system.
Employing an interdisciplinary approach, we use a -X-Ray-fluorescence
scanner to search for large CAIs and a scanning electron microscope to search
for small CAIs in the ordinary chondrite NWA 5697. We carry out long-term,
two-dimensional simulations including gas, dust, and planets to characterize
the transport of grains within the viscous -disk framework exploring
the scenarios of a stand-alone Jupiter, Jupiter and Saturn \textit{in situ}, or
Jupiter and Saturn in a 3:2 resonance. In each case, we find a critical grain
size above which drift is halted as a function of the physical conditions in
the disk. From the laboratory search we find four CAIs with a largest size of
200m. \Combining models and data, we provide an estimate for
the upper limit of the -viscosity and the surface density at the
location of Jupiter, using reasonable assumptions about the stellar accretion
rate during inward transport of CAIs, and assuming angular momentum transport
to happen exclusively through viscous effects. Moreover, we find that the
compound gap structure in the presence of Saturn in a 3:2 resonance favors
inward transport of grains larger than CAIs currently detected in ordinary
chondrites.Comment: 16 pages, 10 figures, updated to match published version in
Astrophysical Journa
Anatomy of rocky planets formed by rapid pebble accretion II. Differentiation by accretion energy and thermal blanketing
We explore the heating and differentiation of rocky planets that grow by
rapid pebble accretion. Our terrestrial planets grow outside of the ice line
and initially accrete 28\% water ice by mass. The accretion of water stops
after the protoplanet reaches a mass of where the gas
envelope becomes hot enough to sublimate the ice and transport the vapour back
to the protoplanetary disc by recycling flows. The energy released by the decay
of Al melts the accreted ice to form clay (phyllosilicates), oxidized
iron (FeO), and a water surface layer with ten times the mass of Earth's modern
oceans. The ocean--atmosphere system undergoes a run-away greenhouse effect
after the effective accretion temperature crosses a threshold of around 300 K.
The run-away greenhouse process vaporizes the water layer, thereby trapping the
accretion heat and heating the surface to more than 6,000 K. This causes the
upper part of the mantle to melt and form a global magma ocean. Metal melt
separates from silicate melt and sediments towards the bottom of the magma
ocean; the gravitational energy released by the sedimentation leads to positive
feedback where the beginning differentiation of the planet causes the whole
mantle to melt and differentiate. All rocky planets thus naturally experience a
magma ocean stage. We demonstrate that Earth's small excess of W (the
decay product of Hf) relative to the chondrites is consistent with such
rapid core formation within 5 Myr followed by equilibration of the W reservoir
in Earth's mantle with W-poor material from the core of a
planetary-mass impactor, provided that the equilibration degree is at least
25%-50%, depending on the initial Hf/W ratio. The planetary collision must have
occurred at least 35 Myr after the main accretion phase of the terrestrial
planets.Comment: Version accepted for Astronomy & Astrophysic
Tracing metalâsilicate segregation and late veneer in the Earth and the ureilite parent body with palladium stable isotopes
International audienceStable isotope studies of highly siderophile elements (HSE) have the potential to yield valuable insights into a range of geological processes. In particular, the strong partitioning of these elements into metal over silicates may lead to stable isotope fractionation during metal-silicate segregation, making them sensitive tracers of planetary differentiation processes. We present the first techniques for the precise determination of palladium stable isotopes by MC-ICPMS using a 106Pd-110Pd double-spike to correct for instrumental mass fractionation. Results are expressed as the per mil (â°) difference in the 106Pd/105Pd ratio (ÎŽ106Pd) relative to an in-house solution standard (Pd_IPGP) in the absence of a certified Pd isotopic standard. Repeated analyses of the Pd isotopic composition of the chondrite Allende demonstrate the external reproducibility of the technique of ±0.032â° on ÎŽ106Pd. Using these techniques, we have analysed Pd stable isotopes from a range of terrestrial and extraterrestrial samples. We find that chondrites define a mean ÎŽ106Pdchondrite = -0.19 ± 0.05â°. Ureilites reveal a weak trend towards heavier ÎŽ106Pd with decreasing Pd content, similar to recent findings based on Pt stable isotopes (Creech et al., 2017), although fractionation of Pd isotopes is significantly less than for Pt, possibly related to its weaker metal-silicate partitioning behaviour and the limited field shift effect. Terrestrial mantle samples have a mean ÎŽ106Pdmantle = -0.182 ± 0.130â°, which is consistent with a late-veneer of chondritic material after core formation
Anatomy of rocky planets formed by rapid pebble accretion I. How icy pebbles determine the core fraction and FeO contents
We present a series of papers dedicated to modelling the accretion and
differentiation of rocky planets that form by pebble accretion within the
lifetime of the protoplanetary disc. In this first paper, we focus on how the
accreted ice determines the distribution of iron between the mantle (oxidized
FeO and FeO) and the core (metallic Fe and FeS). We find that an
initial primitive composition of ice-rich material leads, upon heating by the
decay of Al, to extensive water flow and the formation of clay minerals
inside planetesimals. Metallic iron dissolves in liquid water and precipitates
as oxidized magnetite FeO. Further heating by Al destabilizes
the clay at a temperature of around 900 K. The released supercritical water
ejects the entire water content from the planetesimal. Upon reaching the
silicate melting temperature of 1,700 K, planetesimals further differentiate
into a core (made mainly of iron sulfide FeS) and a mantle with a high fraction
of oxidized iron. We propose that the asteroid Vesta's significant FeO fraction
in the mantle is a testimony of its original ice content. We consider Vesta to
be a surviving member of the population of protoplanets from which Mars, Earth,
and Venus grew by pebble accretion. We show that the increase in the core mass
fraction and decrease in FeO contents with increasing planetary mass (in the
sequence Vesta -- Mars -- Earth) is naturally explained by the growth of
terrestrial planets outside of the water ice line through accretion of pebbles
containing iron that was dominantly in metallic form with an intrinsically low
oxidation degree.Comment: Version accepted for Astronomy & Astrophysic
Anatomy of rocky planets formed by rapid pebble accretion III. Partitioning of volatiles between planetary core, mantle, and atmosphere
Volatile molecules containing hydrogen, carbon, and nitrogen are key
components of planetary atmospheres. In the pebble accretion model for rocky
planet formation, these volatile species are accreted during the main planetary
formation phase. For this study, we modelled the partitioning of volatiles
within a growing planet and the outgassing to the surface. The core stores more
than 90\% of the hydrogen and carbon budgets of Earth for realistic values of
the partition coefficients of H and C between metal and silicate melts. The
magma oceans of Earth and Venus are sufficiently deep to undergo oxidation of
ferrous Fe to ferric Fe. This increased oxidation state leads to
the outgassing of primarily CO and HO from the magma ocean of Earth. In
contrast, the oxidation state of Mars' mantle remains low and the main
outgassed hydrogen carrier is H. This hydrogen easily escapes the
atmosphere due to the irradiation from the young Sun in XUV wavelengths,
dragging with it the majority of the CO, CO, HO, and N contents of
the atmosphere. A small amount of surface water is maintained on Mars, in
agreement with proposed ancient ocean shorelines, for moderately low values of
the mantle oxidation. Nitrogen partitions relatively evenly between the core
and the atmosphere due to its extremely low solubility in magma; the burial of
large reservoirs of nitrogen in the core is thus not possible. The overall low
N contents of Earth disagree with the high abundance of N in all chondrite
classes and favours a volatile delivery by pebble snow. Our model of rapid
rocky planet formation by pebble accretion displays broad consistency with the
volatile contents of the Sun's terrestrial planets. The diversity of the
terrestrial planets can therefore be used as benchmark cases to calibrate
models of extrasolar rocky planets and their atmospheres.Comment: Version accepted for Astronomy & Astrophysic
- âŠ