314 research outputs found

    Initial Conditions for a Universe

    Full text link
    In physical theories, boundary or initial conditions play the role of selecting special situations which can be described by a theory with its general laws. Cosmology has long been suspected to be different in that its fundamental theory should explain the fact that we can observe only one particular realization. This is not realized, however, in the classical formulation and in its conventional quantization; the situation is even worse due to the singularity problem. In recent years, a new formulation of quantum cosmology has been developed which is based on quantum geometry, a candidate for a theory of quantum gravity. Here, the dynamical law and initial conditions turn out to be linked intimately, in combination with a solution of the singularity problem.Comment: 7 pages, this essay was awarded First Prize in the Gravity Research Foundation Essay Contest 200

    Comments on the Sign and Other Aspects of Semiclassical Casimir Energies

    Full text link
    The Casimir energy of a massless scalar field is semiclassically given by contributions due to classical periodic rays. The required subtractions in the spectral density are determined explicitly. The so defined semiclassical Casimir energy coincides with that obtained using zeta function regularization in the cases studied. Poles in the analytic continuation of zeta function regularization are related to non-universal subtractions in the spectral density. The sign of the Casimir energy of a scalar field on a smooth manifold is estimated by the sign of the contribution due to the shortest periodic rays only. Demanding continuity of the Casimir energy under small deformations of the manifold, the method is extended to integrable systems. The Casimir energy of a massless scalar field on a manifold with boundaries includes contributions due to periodic rays that lie entirely within the boundaries. These contributions in general depend on the boundary conditions. Although the Casimir energy due to a massless scalar field may be sensitive to the physical dimensions of manifolds with boundary, its sign can in favorable cases be inferred without explicit calculation of the Casimir energy.Comment: 39 pages, no figures, references added, some correction

    Absence of Singularity in Loop Quantum Cosmology

    Get PDF
    It is shown that the cosmological singularity in isotropic minisuperspaces is naturally removed by quantum geometry. Already at the kinematical level, this is indicated by the fact that the inverse scale factor is represented by a bounded operator even though the classical quantity diverges at the initial singularity. The full demonstation comes from an analysis of quantum dynamics. Because of quantum geometry, the quantum evolution occurs in discrete time steps and does not break down when the volume becomes zero. Instead, space-time can be extended to a branch preceding the classical singularity independently of the matter coupled to the model. For large volume the correct semiclassical behavior is obtained.Comment: 4 pages, 1 figur

    A Feynman-Kac Formula for Anticommuting Brownian Motion

    Get PDF
    Motivated by application to quantum physics, anticommuting analogues of Wiener measure and Brownian motion are constructed. The corresponding Ito integrals are defined and the existence and uniqueness of solutions to a class of stochastic differential equations is established. This machinery is used to provide a Feynman-Kac formula for a class of Hamiltonians. Several specific examples are considered.Comment: 21 page

    The Inverse Scale Factor in Isotropic Quantum Geometry

    Get PDF
    The inverse scale factor, which in classical cosmological models diverges at the singularity, is quantized in isotropic models of loop quantum cosmology by using techniques which have been developed in quantum geometry for a quantization of general relativity. This procedure results in a bounded operator which is diagonalizable simultaneously with the volume operator and whose eigenvalues are determined explicitly. For large scale factors (in fact, up to a scale factor slightly above the Planck length) the eigenvalues are close to the classical expectation, whereas below the Planck length there are large deviations leading to a non-diverging behavior of the inverse scale factor even though the scale factor has vanishing eigenvalues. This is a first indication that the classical singularity is better behaved in loop quantum cosmology.Comment: 17 pages, 4 figure

    Isotropic Loop Quantum Cosmology with Matter

    Full text link
    A free massless scalar field is coupled to homogeneous and isotropic loop quantum cosmology. The coupled model is investigated in the vicinity of the classical singularity, where discreteness is essential and where the quantum model is non-singular, as well as in the regime of large volumes, where it displays the expected semiclassical features. The particular matter content (massless, free scalar) is chosen to illustrate how the discrete structure regulates pathological behavior caused by kinetic terms of matter Hamiltonians (which in standard quantum cosmology lead to wave functions with an infinite number of oscillations near the classical singularity). Due to this modification of the small volume behavior the dynamical initial conditions of loop quantum cosmology are seen to provide a meaningful generalization of DeWitt's initial condition.Comment: 18 pages, 4 figure

    Noise Kernel in Stochastic Gravity and Stress Energy Bi-Tensor of Quantum Fields in Curved Spacetimes

    Full text link
    The noise kernel is the vacuum expectation value of the (operator-valued) stress-energy bi-tensor which describes the fluctuations of a quantum field in curved spacetimes. It plays the role in stochastic semiclassical gravity based on the Einstein-Langevin equation similar to the expectation value of the stress-energy tensor in semiclassical gravity based on the semiclassical Einstein equation. According to the stochastic gravity program, this two point function (and by extension the higher order correlations in a hierarchy) of the stress energy tensor possesses precious statistical mechanical information of quantum fields in curved spacetime and, by the self-consistency required of Einstein's equation, provides a probe into the coherence properties of the gravity sector (as measured by the higher order correlation functions of gravitons) and the quantum nature of spacetime. It reflects the low and medium energy (referring to Planck energy as high energy) behavior of any viable theory of quantum gravity, including string theory. It is also useful for calculating quantum fluctuations of fields in modern theories of structure formation and for backreaction problems in cosmological and black holes spacetimes. We discuss the properties of this bi-tensor with the method of point-separation, and derive a regularized expression of the noise-kernel for a scalar field in general curved spacetimes. One collorary of our finding is that for a massless conformal field the trace of the noise kernel identically vanishes. We outline how the general framework and results derived here can be used for the calculation of noise kernels for Robertson-Walker and Schwarzschild spacetimes.Comment: 22 Pages, RevTeX; version accepted for publication in PR

    Dynamical Initial Conditions in Quantum Cosmology

    Get PDF
    Loop quantum cosmology is shown to provide both the dynamical law and initial conditions for the wave function of a universe by one discrete evolution equation. Accompanied by the condition that semiclassical behavior is obtained at large volume, a unique wave function is predicted.Comment: 4 pages, 1 figur

    Loop Quantum Cosmology II: Volume Operators

    Full text link
    Volume operators measuring the total volume of space in a loop quantum theory of cosmological models are constructed. In the case of models with rotational symmetry an investigation of the Higgs constraint imposed on the reduced connection variables is necessary, a complete solution of which is given for isotropic models; in this case the volume spectrum can be calculated explicitly. It is observed that the stronger the symmetry conditions are the smaller is the volume spectrum, which can be interpreted as level splitting due to broken symmetries. Some implications for quantum cosmology are presented.Comment: 21 page

    A Massive Renormalizable Abelian Gauge Theory in 2+1 Dimensions

    Get PDF
    The standard formulation of a massive Abelian vector field in 2+12+1 dimensions involves a Maxwell kinetic term plus a Chern-Simons mass term; in its place we consider a Chern-Simons kinetic term plus a Stuekelberg mass term. In this latter model, we still have a massive vector field, but now the interaction with a charged spinor field is renormalizable (as opposed to super renormalizable). By choosing an appropriate gauge fixing term, the Stuekelberg auxiliary scalar field decouples from the vector field. The one-loop spinor self energy is computed using operator regularization, a technique which respects the three dimensional character of the antisymmetric tensor ϔαÎČÎł\epsilon_{\alpha\beta\gamma}. This method is used to evaluate the vector self energy to two-loop order; it is found to vanish showing that the beta function is zero to two-loop order. The canonical structure of the model is examined using the Dirac constraint formalism.Comment: LaTeX, 17 pages, expanded reference list and discussion of relationship to previous wor
    • 

    corecore