5,701 research outputs found
The origin of glutamatergic synaptic inputs controls synaptic plasticity and its modulation by alcohol in mice nucleus accumbens
It is widely accepted that long-lasting changes of synaptic strength in the nucleus accumbens (NAc), a brain region involved in drug reward, mediate acute and chronic effects of alcohol. However, our understanding of the mechanisms underlying the effects of alcohol on synaptic plasticity is limited by the fact that the NAc receives glutamatergic inputs from distinct brain regions (e.g., the prefrontal cortex (PFCx), the amygdala and the hippocampus), each region providing different information (e.g., spatial, emotional and cognitive). Combining whole-cell patch-clamp recordings and the optogenetic technique, we examined synaptic plasticity, and its regulation by alcohol, at cortical, hippocampal and amygdala inputs in fresh slices of mouse tissue. We showed that the origin of synaptic inputs determines the basic properties of glutamatergic synaptic transmission, the expression of spike-timing dependent long-term depression (tLTD) and long-term potentiation (LTP) and long-term potentiation (tLTP) and their regulation by alcohol. While we observed both tLTP and tLTD at amygadala and hippocampal synapses, we showed that cortical inputs only undergo tLTD. Functionally, we provide evidence that acute Ethyl Alcohol (EtOH) has little effects on higher order information coming from the PFCx, while severely impacting the ability of emotional and contextual information to induce long-lasting changes of synaptic strength
Ethanol modulation of mammalian BK channels in excitable tissues: molecular targets and their possible contribution to alcohol-induced altered behavior
In most tissues, the function of Ca(2+)- and voltage-gated K(+) (BK) channels is modified in response to ethanol concentrations reached in human blood during alcohol intoxication. In general, modification of BK current from ethanol-naive preparations in response to brief ethanol exposure results from changes in channel open probability without modification of unitary conductance or change in BK protein levels in the membrane. Protracted and/or repeated ethanol exposure, however, may evoke changes in BK expression. The final ethanol effect on BK open probability leading to either BK current potentiation or BK current reduction is determined by an orchestration of molecular factors, including levels of activating ligand (Ca(2+) i), BK subunit composition and post-translational modifications, and the channel\u27s lipid microenvironment. These factors seem to allosterically regulate a direct interaction between ethanol and a recognition pocket of discrete dimensions recently mapped to the channel-forming (slo1) subunit. Type of ethanol exposure also plays a role in the final BK response to the drug: in several central nervous system regions (e.g., striatum, primary sensory neurons, and supraoptic nucleus), acute exposure to ethanol reduces neuronal excitability by enhancing BK activity. In contrast, protracted or repetitive ethanol administration may alter BK subunit composition and membrane expression, rendering the BK complex insensitive to further ethanol exposure. In neurohypophyseal axon terminals, ethanol potentiation of BK channel activity leads to a reduction in neuropeptide release. In vascular smooth muscle, however, ethanol inhibition of BK current leads to cell contraction and vascular constriction
Large conductance voltage- and Ca2+-gated potassium (BK) channel beta4 subunit influences sensitivity and tolerance to alcohol by altering its response to kinases
Tolerance is a well described component of alcohol abuse and addiction. The large conductance voltage- and Ca(2+)-gated potassium channel (BK) has been very useful for studying molecular tolerance. The influence of association with the beta4 subunit can be observed at the level of individual channels, action potentials in brain slices, and finally, drinking behavior in the mouse. Previously, we showed that 50 mm alcohol increases both alpha and alphabeta4 BK channel open probability, but only alpha BK develops acute tolerance to this effect. Currently, we explore the possibility that the influence of the beta4 subunit on tolerance may result from a striking effect of beta4 on kinase modulation of the BK channel. We examine the influence of the beta4 subunit on PKA, CaMKII, and phosphatase modulation of channel activity, and on molecular tolerance to alcohol. We record from human BK channels heterologously expressed in HEK 293 cells composed of its core subunit, alpha alone (Insertless), or co-expressed with the beta4 BK auxiliary subunit, as well as, acutely dissociated nucleus accumbens neurons using the cell-attached patch clamp configuration. Our results indicate that BK channels are strongly modulated by activation of specific kinases (PKA and CaMKII) and phosphatases. The presence of the beta4 subunit greatly influences this modulation, allowing a variety of outcomes for BK channel activity in response to acute alcohol
Dopamine Receptors Differentially Control Binge Alcohol Drinking-Mediated Synaptic Plasticity of the Core Nucleus Accumbens Direct and Indirect Pathways
Binge alcohol drinking, a behavior characterized by rapid repeated alcohol intake, is most prevalent in young adults and is a risk factor for excessive alcohol consumption and alcohol dependence. Although the alteration of synaptic plasticity is thought to contribute to this behavior, there is currently little evidence that this is the case. We used drinking in the dark (DID) as a model of binge alcohol drinking to assess its effects on spike timing-dependent plasticity (STDP) in medium spiny neurons (MSNs) of the core nucleus accumbens (NAc) by combining patch-clamp recordings with calcium imaging and optogenetics. After 2 weeks of daily alcohol binges, synaptic plasticity was profoundly altered. STDP in MSNs expressing dopamine D1 receptors shifted from spike-timing-dependent long-term depression (tLTD), the predominant form of plasticity in naive male mice, to spike-timing-dependent long-term potentiation (tLTP) in DID mice, an effect that was totally reversed in the presence of 4 mum SCH23390, a dopamine D1 receptor antagonist. In MSNs presumably expressing dopamine D2 receptors, tLTP, the main form of plasticity in naive mice, was inhibited in DID mice. Interestingly, 1 mum sulpiride, a D2 receptor antagonist, restored tLTP. Although we observed no alterations of AMPA and NMDA receptor properties, we found that the AMPA/NMDA ratio increased at cortical and amygdaloid inputs but not at hippocampal inputs. Also, DID effects on STDP were accompanied by lower dendritic calcium transients. These data suggest that the role of dopamine in mediating the effects of binge alcohol drinking on synaptic plasticity of NAc MSNs differs markedly whether these neurons belong to the direct or indirect pathways.
SIGNIFICANCE STATEMENT We examined the relationship between binge alcohol drinking and spike timing-dependent plasticity in nucleus accumbens (NAc) neurons. We found that repeated drinking bouts modulate differently synaptic plasticity in medium spiny neurons of the accumbens direct and indirect pathways. While timing-dependent long-term depression switches to long-term potentiation (LTP) in the former, timing-dependent LTP is inhibited in the latter. These effects are not accompanied by changes in AMPA and NMDA receptor properties at cortical, amygdaloid, and hippocampal synapses. Interestingly, dopamine D1 and D2 receptor antagonists have opposite effects on plasticity. Our data show that whether core NAc medium spiny neurons belong to the direct or indirect pathways determines the form of spike timing-dependent plasticity (STDP), the manner by which STDP responds to binge alcohol drinking, and its sensitivity to dopamine receptor antagonists
The relationship between duration of initial alcohol exposure and persistence of molecular tolerance is markedly nonlinear
The neuronal calcium- and voltage-activated BK potassium channel is modulated by ethanol, and plays a role in behavioral tolerance in vertebrates and invertebrates. We examine the influence of temporal parameters of alcohol exposure on the characteristics of BK molecular tolerance in the ventral striatum, an important component of brain reward circuitry. BK channels in striatal neurons of C57BL/6J mice exhibited molecular tolerance whose duration was a function of exposure time. After 6 h exposure to 20 mm (0.09 mg%) ethanol, alcohol sensitivity was suppressed beyond 24 h after withdrawal, while after a 1 or 3 h exposure, sensitivity had significantly recovered after 4 h. This temporally controlled transition to persistent molecular tolerance parallels changes in BK channel isoform profile. After withdrawal from 6 h, but not 3 h alcohol exposure, mRNA levels of the alcohol-insensitive STREX (stress axis-regulated exon) splice variant were increased. Moreover, the biophysical properties of BK channels during withdrawal from 6 h exposure were altered, and match the properties of STREX channels exogenously expressed in HEK 293 cells. Our results suggest a temporally triggered shift in BK isoform identity. Once activated, the transition does not require the continued presence of alcohol. We next determined whether the results obtained using cultured striatal neurons could be observed in acutely dissociated striatal neurons, after alcohol administration in the living mouse. The results were in remarkable agreement with the striatal culture data, showing persistent molecular tolerance after injections producing 6 h of intoxication, but not after injections producing only 3 h of intoxication
The Sodium Channel beta4 Auxiliary Subunit Selectively Controls Long-Term Depression in Core Nucleus Accumbens Medium Spiny Neurons
Voltage-gated sodium channels are essential for generating the initial rapid depolarization of neuronal membrane potential during action potentials (APs) that enable cell-to-cell communication, the propagation of signals throughout the brain, and the induction of synaptic plasticity. Although all brain neurons express one or several variants coding for the core pore-forming sodium channel alpha subunit, the expression of the beta (beta1-4) auxiliary subunits varies greatly. Of particular interest is the beta4 subunit, encoded by the Scn4b gene, that is highly expressed in dorsal and ventral (i.e., nucleus accumbens - NAc) striata compared to other brain regions, and that endows sodium channels with unique gating properties. However, its role on neuronal activity, synaptic plasticity, and behaviors related to drugs of abuse remains poorly understood. Combining whole-cell patch-clamp recordings with two-photon calcium imaging in Scn4b knockout (KO) and knockdown mice, we found that Scn4b altered the properties of APs in core accumbens medium spiny neurons (MSNs). These alterations are associated with a reduction of the probability of MSNs to evoke spike-timing-dependent long-term depression (tLTD) and a reduced ability of backpropagating APs to evoke dendritic calcium transients. In contrast, long-term potentiation (tLTP) remained unaffected. Interestingly, we also showed that amphetamine-induced locomotor activity was significantly reduced in male Scn4b KO mice compared to wild-type controls. Taken together, these data indicate that the Scn4b subunit selectively controls tLTD by modulating dendritic calcium transients evoked by backpropagating APs
Somatic localization of a specific large-conductance calcium-activated potassium channel subtype controls compartmentalized ethanol sensitivity in the nucleus accumbens
Alcohol is an addictive drug that targets a variety of ion channels and receptors. To address whether the effects of alcohol are compartment specific (soma vs dendrite), we examined the effects of ethanol (EtOH) on large-conductance calcium-activated potassium channels (BK) in cell bodies and dendrites of freshly isolated neurons from the rat nucleus accumbens (NAcc), a region known to be critical for the development of addiction. Compartment-specific drug action was indeed observed. Clinically relevant concentrations of EtOH increased somatic but not dendritic BK channel open probability. Electrophysiological single-channel recordings and pharmacological analysis of the BK channel in excised patches from each region indicated a number of differences, suggestive of a compartment-specific expression of the beta4 subunit of the BK channel, that might explain the differential alcohol sensitivity. These parameters included activation kinetics, calcium dependency, and toxin blockade. Reverse transcription-PCR showed that both BK channel beta1 and beta4 subunit mRNAs are found in the NAcc, although the signal for beta1 is significantly weaker. Immunohistochemistry revealed that beta1 subunits were found in both soma and dendrites, whereas beta4 appeared restricted to the soma. These findings suggest that the beta4 subunit may confer EtOH sensitivity to somatic BK channels, whereas the absence of beta4 in the dendrite results in insensitivity to the drug. Consistent with this idea, acute EtOH potentiated alphabeta4 BK currents in transfected human embryonic kidney cells, whereas it failed to alter alphabeta1 BK channel-mediated currents. Finally, an EtOH concentration (50 mm) that increased BK channel open probability strongly decreased the duration of somatic-generated action potential in NAcc neurons
A shot in the genome: how accurately do shotgun 454 sequences represent a genome?
BACKGROUND: Next generation sequencing (NGS) provides a valuable method to quickly obtain sequence information from non-model organisms at a genomic scale. In principle, if sequencing is not targeted for a genomic region or sequence type (e.g. coding region, microsatellites) NGS reads can be used as a genome snapshot and provide information on the different types of sequences in the genome. However, no study has ascertained if a typical 454 dataset of low coverage (1/4-1/8 of a PicoTiter plate leading to generally less than 0.1x of coverage) represents all parts of genomes equally. FINDINGS: Partial genome shotgun sequencing of total DNA (without enrichment) on a 454 NGS platform was used to obtain reads of Apis mellifera (454 reads hereafter). These 454 reads were compared to the assembled chromosomes of this species in three different aspects: (i) dimer and trimer compositions, (ii) the distribution of mapped 454 sequences along the chromosomes and (iii) the numbers of different classes of microsatellites. Highly significant chi-square tests for all three types of analyses indicated that the 454 data is not a perfect random sample of the genome. Only the number of 454 reads mapped to each of the 16 chromosomes and the number of microsatellites pooled by motif (repeat unit) length was not significantly different from the expected values. However, a very strong correlation (correlation coefficients greater than 0.97) was observed between most of the 454 variables (the number of different dimers and trimers, the number of 454 reads mapped to each chromosome fragments of one Mb, the number of 454 reads mapped to each chromosome, the number of microsatellites of each class) and their corresponding genomic variables. CONCLUSIONS: The results of chi square tests suggest that 454 shotgun reads cannot be regarded as a perfect representation of the genome especially if the comparison is done on a finer scale (e.g. chromosome fragments instead of whole chromosomes). However, the high correlation between 454 and genome variables tested indicate that a high proportion of the variability of 454 variables is explained by their genomic counterparts. Therefore, we conclude that using 454 data to obtain information on the genome is biologically meaningful.Emese Meglécz, Nicolas Pech, André Gilles, Jean-François Martin and Michael G Gardne
Comparing Model Selection and Regularization Approaches to Variable Selection in Model-Based Clustering
International audienceWe compare two major approaches to variable selection in clustering: model selection and regularization. Based on previous results, we select the method of Maugis et al. (2009b), which modified the method of Raftery and Dean (2006), as a current state of the art model selection method. We select the method of Witten and Tibshirani (2010) as a current state of the art regularization method. We compared the methods by simulation in terms of their accuracy in both classification and variable selection. In the first simulation experiment all the variables were conditionally independent given cluster membership. We found that variable selection (of either kind) yielded substantial gains in classification accuracy when the clusters were well separated, but few gains when the clusters were close together. We found that the two variable selection methods had comparable classification accuracy, but that the model selection approach had substantially better accuracy in selecting variables. In our second simulation experiment, there were correlations among the variables given the cluster memberships. We found that the model selection approach was substantially more accurate in terms of both classification and variable selection than the regularization approach, and that both gave more accurate classifications than K-means without variable selection. But the model selection approach is not available in a very high dimension contextNous considĂ©rons deux approches importantes pour la sĂ©lection de variables en classification non supervisĂ©e : la sĂ©lection par modĂšle et la rĂ©gularisation. Parmi les procĂ©dures existantes de sĂ©lection de variables par sĂ©lection de modĂšles, nous choisissons la mĂ©thode de Maugis et al. (2009b), gĂ©nĂ©ralisation de celle de Raftery et Dean (2006). Pour les mĂ©thodes fondĂ©es sur la rĂ©gularisation, nous nous intĂ©ressons Ă la mĂ©thode de Witten and Tibshirani (2010). Nous comparons les performances de classification et de sĂ©lection de variables de ces deux procĂ©dures sur des donnĂ©es simulĂ©es. Nous montrons que la sĂ©lection de variables permet dâamĂ©liorer la classification quand les classes sont bien sĂ©parĂ©es. Les deux procĂ©dures de sĂ©lection de variables Ă©tudiĂ©es donnent des classifications analogues dans le premier exemple, mais lâapproche par sĂ©lection de modĂšles a de meilleures performances pour la sĂ©lection de variables. Dans le second exemple, les variables sont corrĂ©lĂ©es. Nous montrons que lâapproche par sĂ©lection de modĂšles amĂ©liore globalement la classification et la sĂ©lection de variables par rapport Ă la rĂ©gularisation, et les deux procĂ©dures donnent de meilleurs rĂ©sultats que lâalgorithme des K-means (sans sĂ©lection de variables) pour la classification. Mais, il convient de noter que la sĂ©lection par modĂšles est inopĂ©rante pour les trĂšs grandes dimensions. Enfin, ce travail de comparaison est Ă©galement menĂ© sur des donnĂ©es rĂ©elles
Setdb1 histone methyltransferase regulates mood-related behaviors and expression of the NMDA receptor subunit NR2B
Histone methyltransferases specific for the histone H3-lysine 9 residue, including Setdb1 (Set domain, bifurcated 1)/Eset/Kmt1e are associated with repressive chromatin remodeling and expressed in adult brain, but potential effects on neuronal function and behavior remain unexplored. Here, we report that transgenic mice with increased Setdb1 expression in adult forebrain neurons show antidepressant-like phenotypes in behavioral paradigms for anhedonia, despair, and learned helplessness. Chromatin immunoprecipitation in conjunction with DNA tiling arrays (ChIP-chip) revealed that genomic occupancies of neuronal Setdb1 are limited t
- âŠ