3,712 research outputs found
The evolution of stable silicon isotopes in a coastal carbonate aquifer on Rottnest Island, Western Australia
Dissolved silicon (dSi) is a key nutrient in the oceans, but data regarding Si isotopes in coastal aquifers are not widely available. Here we investigate the Si isotopic composition of 12 fresh and 16 saline groundwater samples from Rottnest Island, Western Australia, which forms part of the world's most extensive aeolianite deposit (the Tamala Limestone formation). In total, two bedrock samples were also collected from Rottnest Island for Si isotope analysis. The δ30Si values of groundwater samples ranged from −0.4 ‰ to +3.6 ‰ with an average +1.6 ‰, and the rock samples were −0.8 ‰ and −0.1 ‰. The increase in δ30Si values in fresh groundwater is attributed to the removal of the lighter Si isotopes into secondary minerals and potentially also adsorption onto Fe (oxy)hydroxides. The positive correlations between δ30Si values and dSi concentrations (ρ = 0.59; p = 0.02) and δ30Si values and Cl, but not dSi and Cl concentrations, are consistent with vertical mixing between the younger fresh groundwater and the deeper groundwater, which have undergone a greater degree of water–rock interactions. This has produced a spatial pattern in δ30Si across the aquifer due to the local hydrogeology, resulting in a correlation between δ30Si and tritium activities when considering all groundwater types (ρ = −0.68; p = 0.0002). In the deeper aquifer, the inverse correlation between dSi and Cl concentrations (ρ = −0.79; p = 0.04) for the more saline groundwater is attributed to groundwater mixing with local seawater that is depleted in dSi (< 3.6 µM). Our results from this well-constrained island aquifer system demonstrate that stable Si isotopes usefully reflect the degree of water–aquifer interactions, which is related to groundwater residence time and local hydrogeology. Our finding that lithogenic Si dissolution occurs in the freshwater lens and the freshwater–seawater transition zone on Rottnest Island appears to supports the recent inclusion of a marine–submarine groundwater discharge term in the global dSi mass balance. Geologically young carbonate aquifers, such as Rottnest Island, may be an important source of dSi in coastal regions with low riverine input and low oceanic dSi concentrations
Xenome—a tool for classifying reads from xenograft samples
Motivation: Shotgun sequence read data derived from xenograft material contains a mixture of reads arising from the host and reads arising from the graft. Classifying the read mixture to separate the two allows for more precise analysis to be performed
Ares I-X Ground Diagnostic Prototype
The automation of pre-launch diagnostics for launch vehicles offers three potential benefits: improving safety, reducing cost, and reducing launch delays. The Ares I-X Ground Diagnostic Prototype demonstrated anomaly detection, fault detection, fault isolation, and diagnostics for the Ares I-X first-stage Thrust Vector Control and for the associated ground hydraulics while the vehicle was in the Vehicle Assembly Building at Kennedy Space Center (KSC) and while it was on the launch pad. The prototype combines three existing tools. The first tool, TEAMS (Testability Engineering and Maintenance System), is a model-based tool from Qualtech Systems Inc. for fault isolation and diagnostics. The second tool, SHINE (Spacecraft Health Inference Engine), is a rule-based expert system that was developed at the NASA Jet Propulsion Laboratory. We developed SHINE rules for fault detection and mode identification, and used the outputs of SHINE as inputs to TEAMS. The third tool, IMS (Inductive Monitoring System), is an anomaly detection tool that was developed at NASA Ames Research Center. The three tools were integrated and deployed to KSC, where they were interfaced with live data. This paper describes how the prototype performed during the period of time before the launch, including accuracy and computer resource usage. The paper concludes with some of the lessons that we learned from the experience of developing and deploying the prototype
Expression of Cellulosome Components and Type IV Pili within the Extracellular Proteome of Ruminococcus flavefaciens 007
Funding: The Rowett Institute receives funding from SG-RESAS (Scottish Government Rural and Environmental Science and Analysis Service). Visit of M.V. was supported by research grants from FEMS and Slovene human resources development and scholarship funds. Parts of this work were funded by grants from the United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel – BSF Energy Research grant to E.A.B. and B.A.W. and Regular BSF Research grants to R.L. and B.A.W. – and by the Israel Science Foundation (grant nos 966/09 and 159/07 291/08). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD
Use of waveform lidar and hyperspectral sensors to assess selected spatial and structural patterns associated with recent and repeat disturbance and the abundance of sugar maple (Acer saccharum Marsh.) in a temperate mixed hardwood and conifer forest.
Abstract
Waveform lidar imagery was acquired on September 26, 1999 over the Bartlett Experimental Forest (BEF) in New Hampshire (USA) using NASA\u27s Laser Vegetation Imaging Sensor (LVIS). This flight occurred 20 months after an ice storm damaged millions of hectares of forestland in northeastern North America. Lidar measurements of the amplitude and intensity of ground energy returns appeared to readily detect areas of moderate to severe ice storm damage associated with the worst damage. Southern through eastern aspects on side slopes were particularly susceptible to higher levels of damage, in large part overlapping tracts of forest that had suffered the highest levels of wind damage from the 1938 hurricane and containing the highest levels of sugar maple basal area and biomass. The levels of sugar maple abundance were determined through analysis of the 1997 Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) high resolution spectral imagery and inventory of USFS Northern Research Station field plots. We found a relationship between field measurements of stem volume losses and the LVIS metric of mean canopy height (r2 = 0.66; root mean square errors = 5.7 m3/ha, p \u3c 0.0001) in areas that had been subjected to moderate-to-severe ice storm damage, accurately documenting the short-term outcome of a single disturbance event
Illustrating potential efficiency gains from using cost-effectiveness evidence to reallocate Medicare expenditures
This article is available open access through the publisher’s website at the linke below. Copyright @ 2013, International Society for Pharmacoeconomics and
Outcomes Research (ISPOR).This article has been made available through the Brunel Open Access Publishing Fund.Objectives - The Centers for Medicare & Medicaid Services does not explicitly use cost-effectiveness information in national coverage determinations. The objective of this study was to illustrate potential efficiency gains from reallocating Medicare expenditures by using cost-effectiveness information, and the consequences for health gains among Medicare beneficiaries.
Methods - We included national coverage determinations from 1999 through 2007. Estimates of cost-effectiveness were identified through a literature review. For coverage decisions with an associated cost-effectiveness estimate, we estimated utilization and size of the “unserved” eligible population by using a Medicare claims database (2007) and diagnostic and reimbursement codes. Technology costs originated from the cost-effectiveness literature or were estimated by using reimbursement codes. We illustrated potential aggregate health gains from increasing utilization of dominant interventions (i.e., cost saving and health increasing) and from reallocating expenditures by decreasing investment in cost-ineffective interventions and increasing investment in relatively cost-effective interventions.
Results - Complete information was available for 36 interventions. Increasing investment in dominant interventions alone led to an increase of 270,000 quality-adjusted life-years (QALYs) and savings of $12.9 billion. Reallocation of a broader array of interventions yielded an additional 1.8 million QALYs, approximately 0.17 QALYs per affected Medicare beneficiary. Compared with the distribution of resources prior to reallocation, following reallocation a greater proportion was directed to oncology, diagnostic imaging/tests, and the most prevalent diseases. A smaller proportion of resources went to cardiology, treatments (including drugs, surgeries, and medical devices, as opposed to nontreatments such as preventive services), and the least prevalent diseases.
Conclusions - Using cost-effectiveness information has the potential to increase the aggregate health of Medicare beneficiaries while maintaining existing spending levels.The Commonwealth Fun
- …