8,560 research outputs found

    Modeling Helical Structures in Relativistic Jets

    Full text link
    Many jets exhibit twisted helical structures. Where superluminal motions are detected, jet orientation and pattern/flow speed are considerably constrained. In this case modeling efforts can place strong limits on conditions in the jet and in the external environment. This can be done by modeling the spatial development of helical structures which are sensitively dependent on these conditions. Along an expanding jet this sensitivity manifests itself in predictable changes in pattern speed and observed wavelength. In general, twists of low frequency relative to the local resonant frequency are advected along the expanding jet into a region in which the twist frequency is high relative to the local resonant frequency. The wave speed can be very different in these two frequency regimes. Potential effects include helical twists with a nearly constant apparent wavelength, an apparent wavelength scaling approximately with the jet radius for up to two orders of magnitude of jet expansion, or multiple twist wavelengths with vastly different intrinsic scale and vastly different wave speeds that give rise to similar observed twist wavelengths but with very different observed motion. In this paper I illustrate the basic intrinsic and observed behavior of these structures and show how to place constraints on jet conditions in superluminal jets using the apparent structures and motions in the inner 3C 120 jet.Comment: 18 pages, 7 figure

    Deep Infrared Imaging of the Microquasars 1E1740-2942 and GRS 1758-258

    Get PDF
    We present deep infrared (2.2μ2.2 \mum) imaging of the Galactic microquasars 1E1740-2942 and GRS 1758-258 using the Keck-I 10-meter telescope in June 1998. The observations were taken under excellent seeing conditions (\sim 0.45 \arcsec full-width half-maximum), making them exceptionally deep for these crowded fields. We used the USNO-A2.0 catalog to astrometrically calibrate the infrared images (along with an optical CCD image in the case of GRS 1758-258), providing independent frame ties to the known radio positions of the objects. For 1E1740-2942, we confirm potential candidates for the microquasar previously identified by Marti et al., and show that none of the objects near the microquasar have varied significantly from 1998 to 1999. For GRS 1758-258, our astrometry indicates a position shifted from previous reports of candidates for the microquasar. We find no candidates inside our 90% confidence radius to a 2σ2 \sigma limiting magnitude of Ks=20.3K_s = 20.3 mag. We discuss the implications of these results for the nature of the microquasar binary systems.Comment: To appear in the Astrophysical Journal; 15 pages, including 4 figure

    Equation of State in Numerical Relativistic Hydrodynamics

    Get PDF
    Relativistic temperature of gas raises the issue of the equation of state (EoS) in relativistic hydrodynamics. We study the EoS for numerical relativistic hydrodynamics, and propose a new EoS that is simple and yet approximates very closely the EoS of the single-component perfect gas in relativistic regime. We also discuss the calculation of primitive variables from conservative ones for the EoS's considered in the paper, and present the eigenstructure of relativistic hydrodynamics for a general EoS, in a way that they can be used to build numerical codes. Tests with a code based on the Total Variation Diminishing (TVD) scheme are presented to highlight the differences induced by different EoS's.Comment: To appear in the ApJS September 2006, v166n1 issue. Pdf with full resolution figures can be downloaded from http://canopus.cnu.ac.kr/ryu/ryuetal.pd

    Indoor Navigation with MEMS sensors

    Get PDF
    AbstractAccurate positioning becomes extremely important for modern application like indoor navigation and location-based services. Standalone GPS cannot meet this accuracy. In this paper a method to couple GPS and a high resolution MEMS pressure sensor is presented to improve vertical as well as horizontal (in urban canyon environment) positioning. Further, a step counter based on an accelerometer is improved with an altimeter for stair detection and automatic step length adaptation for dead reckoning inside buildings. Finally, a stand-alone system accurately tracks floor levels inside buildings, using only a pressure sensor
    corecore