6 research outputs found

    Exercise engagement drives changes in cognition and cardiorespiratory fitness after 8 weeks of aerobic training in sedentary aging adults at risk of cognitive decline

    Get PDF
    BackgroundWith our aging population, many individuals are at risk of developing age-related cognitive decline. Physical exercise has been demonstrated to enhance cognitive performance in aging adults. This study examined the effects of 8 weeks of aerobic exercise on cognitive performance and cardiorespiratory fitness in sedentary aging adults at risk for cognitive decline.MethodsFifty-two participants (age 62.9 ± 6.8, 76.9% female) engaged in eight weeks of moderate-to high-intensity exercise (19 in-person, 33 remotely). Global cognition was measured by the Repeatable Battery for the Assessment of Neuropsychological Status, the Delis-Kaplan Executive Function System, and the Digit Span subtest of the Wechsler Adult Intelligence Scale (WAIS) Fourth Edition. Cardiorespiratory fitness was measured via heart rate recovery at minute 1 (HRR1) and 2 (HRR2), and exercise engagement (defined as percent of total exercise time spent in the prescribed heart rate zone). We measured pre and post changes using paired t-tests and mixed effects models, and investigated the association between cardiorespiratory and cognitive performance using multiple regression models. Cohen's d were calculated to estimate effect sizes.ResultsOverall, 63.4 % of participants demonstrated high engagement (≥ 70% total exercise time spent in the prescribed heart rate zone). There were significant pre-post improvements in verbal fluency and verbal memory, and a significant decrement in working memory, but these were associated with small effect sizes (Cohen's d <0.5). Concerning cardiorespiratory fitness, there was a pre-to-post significant improvement in HRR1 (p = 0.01, d = 0.30) and HRR2 (p < 0.001, d = 0.50). Multiple regressions revealed significant associations between cardiorespiratory and cognitive performance, but all were associated with small effect sizes (Cohen's d < 0.5). Interestingly, there were significant between-group differences in exercise engagement (all p < 0.001), with remote participants demonstrating greater exercise engagement than in-person participants.ConclusionImprovements in cognition and cardiorespiratory fitness were observed after 8 weeks of moderate to high-intensity exercise in aging adults. These results suggest that committing to a regular exercise regimen, even for a brief two-month period, can promote improvements in both cardiorespiratory fitness and cognitive performance, and that improvements are driven by exercise engagement

    Cut-Off Values in the Prediction of Success in Olympic Distance Triathlon

    Get PDF
    Cut-off points and performance-related tools are needed for the development of the Olympic distance triathlon. The purposes of the present study were (i) to determine cut-off values to reach the top three positions in an Olympic distance triathlon; (ii) to identify which discipline present the highest influence on overall race performance and if it has changed over the decades. Data from 1989 to 2019 (n = 52,027) from all who have competed in an official Olympic distance triathlon events (World Triathlon Series and Olympics) were included. The cut-off value to achieve a top three position was calculated. Linear regressions were applied for performance trends overall and for the top three positions of each race. Men had cut-off values of: swimming = 19.5 min; cycling = 60.7 min; running = 34.1 min. Women’s cut-off values were: swimming = 20.7 min; cycling = 71.6 min; running = 38.1 min. The running split seemed to be the most influential in overall race time regardless of rank position or sex. In conclusion, cut-offs were established, which can increase the chances of achieving a successful rank position in an Olympic triathlon. Cycling is the discipline with the least influence on overall performance for both men and women in the Olympic distance triathlon. This influence pattern has not changed in the last three decades

    Exercise engagement drives changes in cognition and cardiorespiratory fitness after 8 weeks of aerobic training in sedentary aging adults at risk of cognitive decline

    No full text
    BACKGROUND: With our aging population, many individuals are at risk of developing age-related cognitive decline. Physical exercise has been demonstrated to enhance cognitive performance in aging adults. This study examined the effects of 8 weeks of aerobic exercise on cognitive performance and cardiorespiratory fitness in sedentary aging adults at risk for cognitive decline. METHODS: Fifty-two participants (age 62.9 ± 6.8, 76.9% female) engaged in eight weeks of moderate-to high-intensity exercise (19 in-person, 33 remotely). Global cognition was measured by the Repeatable Battery for the Assessment of Neuropsychological Status, the Delis-Kaplan Executive Function System, and the Digit Span subtest of the Wechsler Adult Intelligence Scale (WAIS) Fourth Edition. Cardiorespiratory fitness was measured via heart rate recovery at minute 1 (HRR1) and 2 (HRR2), and exercise engagement (defined as percent of total exercise time spent in the prescribed heart rate zone). We measured pre and post changes using paired t-tests and mixed effects models, and investigated the association between cardiorespiratory and cognitive performance using multiple regression models. Cohen's d were calculated to estimate effect sizes. RESULTS: Overall, 63.4 % of participants demonstrated high engagement (≥ 70% total exercise time spent in the prescribed heart rate zone). There were significant pre-post improvements in verbal fluency and verbal memory, and a significant decrement in working memory, but these were associated with small effect sizes (Cohen's d <0.5). Concerning cardiorespiratory fitness, there was a pre-to-post significant improvement in HRR1 (p = 0.01, d = 0.30) and HRR2 (p < 0.001, d = 0.50). Multiple regressions revealed significant associations between cardiorespiratory and cognitive performance, but all were associated with small effect sizes (Cohen's d < 0.5). Interestingly, there were significant between-group differences in exercise engagement (all p < 0.001), with remote participants demonstrating greater exercise engagement than in-person participants. CONCLUSION: Improvements in cognition and cardiorespiratory fitness were observed after 8 weeks of moderate to high-intensity exercise in aging adults. These results suggest that committing to a regular exercise regimen, even for a brief two-month period, can promote improvements in both cardiorespiratory fitness and cognitive performance, and that improvements are driven by exercise engagement
    corecore