1,151 research outputs found

    Towards logical negation for compositional distributional semantics

    Get PDF
    The categorical compositional distributional model of meaning gives the composition of words into phrases and sentences pride of place. However, it has so far lacked a model of logical negation. This paper gives some steps towards providing this operator, modelling it as a version of projection onto the subspace orthogonal to a word. We give a small demonstration of the operators performance in a sentence entailment task

    Grounded learning for compositional vector semantics

    Full text link
    Categorical compositional distributional semantics is an approach to modelling language that combines the success of vector-based models of meaning with the compositional power of formal semantics. However, this approach was developed without an eye to cognitive plausibility. Vector representations of concepts and concept binding are also of interest in cognitive science, and have been proposed as a way of representing concepts within a biologically plausible spiking neural network. This work proposes a way for compositional distributional semantics to be implemented within a spiking neural network architecture, with the potential to address problems in concept binding, and give a small implementation. We also describe a means of training word representations using labelled images
    • …
    corecore