8,691 research outputs found
Why must we work in the phase space?
We are going to prove that the phase-space description is fundamental both in
the classical and quantum physics. It is shown that many problems in
statistical mechanics, quantum mechanics, quasi-classical theory and in the
theory of integrable systems may be well-formulated only in the phase-space
language.Comment: 130 page
Quasiclassical and Quantum Systems of Angular Momentum. Part II. Quantum Mechanics on Lie Groups and Methods of Group Algebras
In Part I of this series we presented the general ideas of applying
group-algebraic methods for describing quantum systems. The treatment was there
very "ascetic" in that only the structure of a locally compact topological
group was used. Below we explicitly make use of the Lie group structure. Basing
on differential geometry enables one to introduce explicitly representation of
important physical quantities and formulate the general ideas of quasiclassical
representation and classical analogy
The genotype-phenotype relationship in multicellular pattern-generating models - the neglected role of pattern descriptors
Background: A deep understanding of what causes the phenotypic variation arising from biological patterning
processes, cannot be claimed before we are able to recreate this variation by mathematical models capable of
generating genotype-phenotype maps in a causally cohesive way. However, the concept of pattern in a
multicellular context implies that what matters is not the state of every single cell, but certain emergent qualities
of the total cell aggregate. Thus, in order to set up a genotype-phenotype map in such a spatiotemporal pattern
setting one is actually forced to establish new pattern descriptors and derive their relations to parameters of the
original model. A pattern descriptor is a variable that describes and quantifies a certain qualitative feature of the
pattern, for example the degree to which certain macroscopic structures are present. There is today no general
procedure for how to relate a set of patterns and their characteristic features to the functional relationships,
parameter values and initial values of an original pattern-generating model. Here we present a new, generic
approach for explorative analysis of complex patterning models which focuses on the essential pattern features
and their relations to the model parameters. The approach is illustrated on an existing model for Delta-Notch
lateral inhibition over a two-dimensional lattice.
Results: By combining computer simulations according to a succession of statistical experimental designs,
computer graphics, automatic image analysis, human sensory descriptive analysis and multivariate data modelling,
we derive a pattern descriptor model of those macroscopic, emergent aspects of the patterns that we consider
of interest. The pattern descriptor model relates the values of the new, dedicated pattern descriptors to the
parameter values of the original model, for example by predicting the parameter values leading to particular
patterns, and provides insights that would have been hard to obtain by traditional methods.
Conclusion: The results suggest that our approach may qualify as a general procedure for how to discover and
relate relevant features and characteristics of emergent patterns to the functional relationships, parameter values
and initial values of an underlying pattern-generating mathematical model
On the Hyperbolicity of Lorenz Renormalization
We consider infinitely renormalizable Lorenz maps with real critical exponent
and combinatorial type which is monotone and satisfies a long return
condition. For these combinatorial types we prove the existence of periodic
points of the renormalization operator, and that each map in the limit set of
renormalization has an associated unstable manifold. An unstable manifold
defines a family of Lorenz maps and we prove that each infinitely
renormalizable combinatorial type (satisfying the above conditions) has a
unique representative within such a family. We also prove that each infinitely
renormalizable map has no wandering intervals and that the closure of the
forward orbits of its critical values is a Cantor attractor of measure zero.Comment: 63 pages; 10 figure
- …