8,295 research outputs found
Quasiclassical and Quantum Systems of Angular Momentum. Part II. Quantum Mechanics on Lie Groups and Methods of Group Algebras
In Part I of this series we presented the general ideas of applying
group-algebraic methods for describing quantum systems. The treatment was there
very "ascetic" in that only the structure of a locally compact topological
group was used. Below we explicitly make use of the Lie group structure. Basing
on differential geometry enables one to introduce explicitly representation of
important physical quantities and formulate the general ideas of quasiclassical
representation and classical analogy
Multiport VNA Measurements
This article presents some of the most recent multiport VNA measurement methodologies used to characterize these highspeed digital networks for signal integrity. There will be a discussion of the trends and measurement challenges of high-speed digital systems, followed by a presentation of the multiport VNA measurement system details, calibration, and measurement techniques, as well as some examples of interconnect device measurements. The intent here is to present some general concepts and trends for multiport VNA measurements as applied to computer system board-level interconnect structures, and not to promote any particular brand or produc
On the Hyperbolicity of Lorenz Renormalization
We consider infinitely renormalizable Lorenz maps with real critical exponent
and combinatorial type which is monotone and satisfies a long return
condition. For these combinatorial types we prove the existence of periodic
points of the renormalization operator, and that each map in the limit set of
renormalization has an associated unstable manifold. An unstable manifold
defines a family of Lorenz maps and we prove that each infinitely
renormalizable combinatorial type (satisfying the above conditions) has a
unique representative within such a family. We also prove that each infinitely
renormalizable map has no wandering intervals and that the closure of the
forward orbits of its critical values is a Cantor attractor of measure zero.Comment: 63 pages; 10 figure
Streaming Tree Transducers
Theory of tree transducers provides a foundation for understanding
expressiveness and complexity of analysis problems for specification languages
for transforming hierarchically structured data such as XML documents. We
introduce streaming tree transducers as an analyzable, executable, and
expressive model for transforming unranked ordered trees in a single pass.
Given a linear encoding of the input tree, the transducer makes a single
left-to-right pass through the input, and computes the output in linear time
using a finite-state control, a visibly pushdown stack, and a finite number of
variables that store output chunks that can be combined using the operations of
string-concatenation and tree-insertion. We prove that the expressiveness of
the model coincides with transductions definable using monadic second-order
logic (MSO). Existing models of tree transducers either cannot implement all
MSO-definable transformations, or require regular look ahead that prohibits
single-pass implementation. We show a variety of analysis problems such as
type-checking and checking functional equivalence are solvable for our model.Comment: 40 page
Development and operation of a pixel segmented liquid-filled linear array for radiotherapy quality assurance
A liquid isooctane (CH) filled ionization linear array for
radiotherapy quality assurance has been designed, built and tested. The
detector consists of 128 pixels, each of them with an area of 1.7 mm
1.7 mm and a gap of 0.5 mm. The small pixel size makes the detector ideal for
high gradient beam profiles like those present in Intensity Modulated Radiation
Therapy (IMRT) and radiosurgery. As read-out electronics we use the X-Ray Data
Acquisition System (XDAS) with the Xchip developed by the CCLRC.
Studies concerning the collection efficiency dependence on the polarization
voltage and on the dose rate have been made in order to optimize the device
operation.
In the first tests we have studied dose rate and energy dependences, and
signal reproducibility. Dose rate dependence was found lower than 2.5 % up to 5
Gy min, and energy dependence lower than 2.1 % up to 20 cm depth in
solid water. Output factors and penumbras for several rectangular fields have
been measured with the linear array and were compared with the results obtained
with a 0.125 cm air ionization chamber and radiographic film,
respectively. Finally, we have acquired profiles for an IMRT field and for a
virtual wedge. These profiles have also been compared with radiographic film
measurements. All the comparisons show a good correspondence. Signal
reproducibility was within a 2% during the test period (around three months).
The device has proved its capability to verify on-line therapy beams with
good spatial resolution and signal to noise ratio.Comment: 16 pages, 12 figures Submitted to Phys. Med. Bio
- âŠ