11,266 research outputs found

    Why must we work in the phase space?

    Full text link
    We are going to prove that the phase-space description is fundamental both in the classical and quantum physics. It is shown that many problems in statistical mechanics, quantum mechanics, quasi-classical theory and in the theory of integrable systems may be well-formulated only in the phase-space language.Comment: 130 page

    Basins of Attraction for Chimera States

    Get PDF
    Chimera states---curious symmetry-broken states in systems of identical coupled oscillators---typically occur only for certain initial conditions. Here we analyze their basins of attraction in a simple system comprised of two populations. Using perturbative analysis and numerical simulation we evaluate asymptotic states and associated destination maps, and demonstrate that basins form a complex twisting structure in phase space. Understanding the basins' precise nature may help in the development of control methods to switch between chimera patterns, with possible technological and neural system applications.Comment: Please see Ancillary files for the 4 supplementary videos including description (PDF

    Quasiclassical and Quantum Systems of Angular Momentum. Part II. Quantum Mechanics on Lie Groups and Methods of Group Algebras

    Full text link
    In Part I of this series we presented the general ideas of applying group-algebraic methods for describing quantum systems. The treatment was there very "ascetic" in that only the structure of a locally compact topological group was used. Below we explicitly make use of the Lie group structure. Basing on differential geometry enables one to introduce explicitly representation of important physical quantities and formulate the general ideas of quasiclassical representation and classical analogy

    Bistable Chimera Attractors on a Triangular Network of Oscillator Populations

    Full text link
    We study a triangular network of three populations of coupled phase oscillators with identical frequencies. The populations interact nonlocally, in the sense that all oscillators are coupled to one another, but more weakly to those in neighboring populations than to those in their own population. This triangular network is the simplest discretization of a continuous ring of oscillators. Yet it displays an unexpectedly different behavior: in contrast to the lone stable chimera observed in continuous rings of oscillators, we find that this system exhibits \emph{two coexisting stable chimeras}. Both chimeras are, as usual, born through a saddle node bifurcation. As the coupling becomes increasingly local in nature they lose stability through a Hopf bifurcation, giving rise to breathing chimeras, which in turn get destroyed through a homoclinic bifurcation. Remarkably, one of the chimeras reemerges by a reversal of this scenario as we further increase the locality of the coupling, until it is annihilated through another saddle node bifurcation.Comment: 12 pages, 5 figure

    On the Hyperbolicity of Lorenz Renormalization

    Full text link
    We consider infinitely renormalizable Lorenz maps with real critical exponent α>1\alpha>1 and combinatorial type which is monotone and satisfies a long return condition. For these combinatorial types we prove the existence of periodic points of the renormalization operator, and that each map in the limit set of renormalization has an associated unstable manifold. An unstable manifold defines a family of Lorenz maps and we prove that each infinitely renormalizable combinatorial type (satisfying the above conditions) has a unique representative within such a family. We also prove that each infinitely renormalizable map has no wandering intervals and that the closure of the forward orbits of its critical values is a Cantor attractor of measure zero.Comment: 63 pages; 10 figure
    corecore