22 research outputs found

    Health impact assessment of coal-fired boiler retirement at the Martin Drake and Comanche power plants

    Get PDF
    Includes bibliographical references.Health impact assessment (HIA) is a suite of tools used to characterize potential health effects of policies, projects, or regulations. The objective of this HIA was to understand the impact of decommissioning units at two large coal-fired power plants on mortality and morbidity in the Southern Front Range region of Colorado. Based on Community Multiscale Air Quality (CMAQ) chemical transport models of fine particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5) and ozone (O3), we modeled five potential emissions reductions scenarios and estimated the potential health benefits of reduced exposures to PM2.5 and ozone for premature deaths, cardiovascular and respiratory hospitalizations, and other health outcomes for ZIP codes in the Southern Front Range region, including the cities of Denver, Colorado Springs, and Pueblo. Health Benefits Scenarios 1 and 2 estimated the health benefits of shutting down most units at the Comanche plant in Pueblo, CO (one newer unit remained operational) relative to a baseline scenario using emissions from 2011 (Scenario 1) or a counterfactual baseline scenario that accounted for sulfur dioxide emissions controls (scrubbers) installed at the Martin Drake plant in Colorado Springs in 2016 (Scenario 2). Health Benefits Scenario 3 estimated the benefits of shutting down the Martin Drake plant relative to the 2011 baseline. Health Benefits Scenario 4 estimated the health benefits of shutting down the Martin Drake power plant and shutting down all but one boiler at the Comanche power plant relative to a 2011 emissions baseline. Health Benefits Scenario 5 estimated the marginal health benefits of decommissioning these plants (with one remaining coal-fired boiler at Comanche) relative to a counterfactual baseline year that considered emissions controls installed at the Martin Drake facility in 2016. In addition to estimating the number of deaths, hospitalizations, and other health outcomes that would potentially be avoided by reducing emissions at these facilities, we also estimated the monetary impact using outcome valuations typically used in US EPA health benefits analyses and examined the environmental justice implications of reduced emissions and exposures across the Southern Front Range. • For Health Benefits Scenario 1 (Comanche Units 3 and 4 were “zeroed out” and compared to a baseline where all other emissions were at 2011 levels), we estimated that reducing population exposures to PM2.5 would result in 1 (95% CI: 0 - 1) fewer premature death each year. Reductions in PM2.5 and O3 exposures would also result in fewer restricted activity days among adults [5 (95% CI: -3 – 95)] and fewer missed school days for children [27 (95% CI: -19- 582)]. Benefits of retiring the Comanche units were similar when emissions controls at Martin Drake are taken into account (Health Benefits Scenario 2). • For Health Benefits Scenario 3 (emissions at Martin Drake were “zeroed out”), we estimated that reducing population exposures to PM2.5 and O3 would result in 4 (95% CI: 2 - 5) and < 1 (95% CI: 0 - 1) fewer premature deaths each year, respectively. Reductions in PM2.5 and O3 exposures would also result in fewer restricted activity days among adults [10 (95% CI: 0 – 74)] and fewer missed school days for children [4 (95% CI: 2- 5)]. • For Health Benefits Scenario 4, we estimated that reducing population exposures to PM2.5 and O3 would result in 4 (95% CI: 2 - 6) and < 1 (95% CI: 0 - 1) fewer premature deaths each year, respectively. Among the largest annual health benefits are avoided asthma symptom days among children [16 (95% CI: -1 – 141) due to PM2.5 and 13 (95% CI: -348 - 972) due to O3] and minor restricted activity days among adults [69 (95% CI: 0 - 488) due to PM2.5 and 71 (95% CI: -31 - 750) due to O3]. We also estimated that, for Health Benefits Scenario 1, children in the study area would miss 77 (95% CI: -77 - 1180) fewer days of school each year due to lower O3 exposures. • Annual health benefits were lower for Health Benefits Scenario 5 compared to Scenario 4 due to the smaller change in exposure concentration after accounting for the control technologies installed at Martin Drake in 2016. For Health Benefits Scenario 5, we estimated that reducing population exposures to PM2.5 and O3 would result in 2 (95% CI: 1 - 3) and < 1 (95% CI: 0 - 1) fewer premature deaths each year, respectively. Other annual benefits under Health Benefits Scenario 2 included 2 (95% CI: -17 – 44) and 9 (-242 – 678) avoided asthma symptom days due to PM2.5 and O3 exposures, respectively; 28 (95%CI: -2 – 188) and 48 (95%CI: -16 – 513) minor restricted activity days due to PM2.5 and O3 exposures; and 53 (95% CI: -48 – 833) avoided school absences among children due to O3 exposures. • Monetized health benefits when both plants were “zeroed out” ranged from 4.2million(954.2 million (95% CI: 2.1 million - 7.2million)forHealthBenefitsScenario4to7.2 million) for Health Benefits Scenario 4 to 1.7 million (95% CI: $0.8 million – 3.2 million) for Health Benefits Scenario 5. Benefits tended to be smaller when only one plant was considered. In all of the analyses, the monetized impacts were driven by the value of avoided premature mortality. In addition, we found that ZIP codes with lower median incomes tended to receive a greater share of the health benefits of decreasing exposures to PM2.5 and O3 resulting from power plant shutdowns. This finding suggests that reducing emissions at the power plants could potentially alleviate some environmental justice concerns in the area

    Environmental exposure to pyrethroids and sperm sex chromosome disomy: a cross-sectional study

    Full text link
    Abstract Background The role of environmental pesticide exposures, such as pyrethroids, and their relationship to sperm abnormalities are not well understood. This study investigated whether environmental exposure to pyrethroids was associated with altered frequency of sperm sex chromosome disomy in adult men. Methods A sample of 75 subjects recruited through a Massachusetts infertility clinic provided urine and semen samples. Individual exposures were measured as urinary concentrations of three pyrethroid metabolites ((3-phenoxybenzoic acid (3PBA), cis- and trans- 3-(2,2-Dichlorovinyl)-1-methylcyclopropane-1,2-dicarboxylic acid (CDCCA and TDCCA)). Multiprobe fluorescence in situ hybridization for chromosomes X, Y, and 18 was used to determine XX, YY, XY, 1818, and total sex chromosome disomy in sperm nuclei. Poisson regression analysis was used to examine the association between aneuploidy rates and pyrethroid metabolites while adjusting for covariates. Results Between 25-56% of the sample were above the limit of detection (LOD) for the pyrethroid metabolites. All sex chromosome disomies were increased by 7-30% when comparing men with CDCCA and TDCCA levels above the LOD to those below the LOD. For 3PBA, compared to those below the LOD, those above the LOD had YY18 disomy rates 1.28 times higher (95% CI: 1.15, 1.42) whereas a reduced rate was seen for XY18 and total disomy (IRR = 0.82; 95% CI: 0.77, 0.87; IRR = 0.93; 95% CI: 0.87-0.97), and no association was seen for XX18 and 1818. Conclusions Our findings suggest that urinary concentrations of CDCCA and TDCCA above the LOD were associated with increased rates of aneuploidy. However the findings for 3BPA were not consistent. This is the first study to examine these relationships, and replication of our findings is needed before the association between pyrethroid metabolites and aneuploidy can be fully defined.http://deepblue.lib.umich.edu/bitstream/2027.42/134538/1/12940_2013_Article_854.pd

    Environmental exposure to pyrethroids and sperm sex chromosome disomy: A cross-sectional study

    Get PDF
    Background The role of environmental pesticide exposures, such as pyrethroids, and their relationship to sperm abnormalities are not well understood. This study investigated whether environmental exposure to pyrethroids was associated with altered frequency of sperm sex chromosome disomy in adult men. Methods A sample of 75 subjects recruited through a Massachusetts infertility clinic provided urine and semen samples. Individual exposures were measured as urinary concentrations of three pyrethroid metabolites ((3-phenoxybenzoic acid (3PBA), cis- and trans- 3-(2,2-Dichlorovinyl)-1-methylcyclopropane-1,2-dicarboxylic acid (CDCCA and TDCCA)). Multiprobe fluorescence in situ hybridization for chromosomes X, Y, and 18 was used to determine XX, YY, XY, 1818, and total sex chromosome disomy in sperm nuclei. Poisson regression analysis was used to examine the association between aneuploidy rates and pyrethroid metabolites while adjusting for covariates. Results Between 25-56% of the sample were above the limit of detection (LOD) for the pyrethroid metabolites. All sex chromosome disomies were increased by 7-30% when comparing men with CDCCA and TDCCA levels above the LOD to those below the LOD. For 3PBA, compared to those below the LOD, those above the LOD had YY18 disomy rates 1.28 times higher (95% CI: 1.15, 1.42) whereas a reduced rate was seen for XY18 and total disomy (IRR = 0.82; 95% CI: 0.77, 0.87; IRR = 0.93; 95% CI: 0.87-0.97), and no association was seen for XX18 and 1818. Conclusions Our findings suggest that urinary concentrations of CDCCA and TDCCA above the LOD were associated with increased rates of aneuploidy. However the findings for 3BPA were not consistent. This is the first study to examine these relationships, and replication of our findings is needed before the association between pyrethroid metabolites and aneuploidy can be fully defined

    Sperm Aneuploidy in Faroese Men with Lifetime Exposure to Dichlorodiphenyldichloroethylene (DDE) and Polychlorinated Biphenyl (PCB) Pollutants.

    Get PDF
    Background: Although it is known that sperm aneuploidy contributes to early pregnancy losses and congenital abnormalities, the causes are unknown and environmental contaminants are suspected. Objectives: Our goal was to evaluate associations between lifetime exposure to organochlorines, specifically dichlorodiphenyldicholorethylene (p,p´-DDE) and polychlorinated biphenyls (PCBs), and sperm aneuploidy in men from the general population of the Faroe Islands, a population with a known history of organochlorine exposures. Methods: Serum and semen samples from men (n = 90) 22–44 years old who participated in Faroe Islands health studies were analyzed for p,p´-DDE and PCBs 118, 138, 153, and 180 and adjusted for total lipids. Cord blood and age-14 serum were available for a subgroup (n = 40) and were also analyzed for p,p´-DDE and PCBs. Sperm fluorescence in situhybridization (FISH) for chromosomes X, Y, and 18 was used to determine rates of XX18, XY18, YY18, and total disomy. Multivariable adjusted Poisson models were used to estimate the relationship between organochlorine exposure and sperm disomy outcomes. Results: Adult p,p´-DDE and total PCB serum concentrations were both associated with significantly increased rates of XX18, XY18, and total disomy. Age-14 p,p´-DDE and PCB concentrations were both associated with significantly increased rates of XX, XY, and total disomy in adulthood. Associations between cord blood concentrations of p,p´-DDE and PCBs and sperm disomy in adulthood were not consistently significant. Conclusions: Organochlorine exposures measured at age 14 and in adulthood were associated with sperm disomy in this sample of high-exposure men, suggesting that the impacts of persistent pollutants on testicular maturation and function require further investigation

    Health and Inequality Metrics for Urban-scale Air Quality Management

    Full text link
    Despite the successes of the Clean Air Act in the United States, ambient air pollution continues to be an important public health and environmental justice challenge. These challenges are especially evident at the local scale, where gradients in exposures, risks, and vulnerability may be sharp and align spatially, leading to disproportionate impacts. The goals of this dissertation are to use quantitative health impact assessment (HIA) techniques with inequality metrics to estimate the health burden attributable to ambient air pollution at a local scale, to better understand how health burdens are distributed across populations, and to assess air quality management (AQM) strategies for reducing this burden. The work is based in Detroit, MI and several adjacent cities, an urban area with a legacy of air quality challenges. The first aim examines health impact metrics used in the literature and makes recommendations about which metrics are most appropriate for AQM studies. Multiple metrics are recommended to meet the diverse needs of AQM stakeholders, specifically the number of attributable cases of mortality and morbidity, disability-adjusted life years, and monetized impacts. The second aim quantifies the health burden and inequality due to ambient air pollutants in Detroit, and apportions this burden to source types, e.g., regional, point, and mobile sources. The HIA results show fine particulate matter (PM2.5) and ozone have the highest total health burdens on the population and that exposures to PM2.5, sulfur dioxide (SO2), and nitrogen dioxide from point and mobile sources have disproportionate impacts on vulnerable populations. The third aim examines the potential health benefits of two strategies to reduce air pollutant exposures: decreasing SO2 emissions at nearby industrial facilities and installing particulate matter filters in homes and schools in the area. The first strategy analysis, which compares alternative approaches to reducing emissions of SO2 at major point sources in the study area, demonstrates that using health and inequality metrics when comparing alternatives can identify point source controls strategies that better meet AQM and health goals. This study also suggests the control strategy proposed by the Michigan Department of Environmental Quality to attain compliance with the SO2 standard will have only modest health benefits for residents of Detroit and will do little to alleviate disparities in SO2 health burdens. The second strategy analysis, which estimates the benefits of filters with different efficiencies, indicates that the widespread use of filters, especially in schools, can be a cost-effective strategy for reducing asthma burdens for school-aged children in the area. Overall, the results of this dissertation indicate air pollution continues to be public health and environmental justice challenge for Detroit, MI, and that quantitative HIA metrics combined with key inequality metrics can support AQM decision-making to select alternatives that improve public health and reduce health disparities.PHDEnvironmental Health SciencesUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/138781/1/smarten_1.pd

    Disease and Health Inequalities Attributable to Air Pollutant Exposure in Detroit, Michigan

    No full text
    The environmental burden of disease is the mortality and morbidity attributable to exposures of air pollution and other stressors. The inequality metrics used in cumulative impact and environmental justice studies can be incorporated into environmental burden studies to better understand the health disparities of ambient air pollutant exposures. This study examines the diseases and health disparities attributable to air pollutants for the Detroit urban area. We apportion this burden to various groups of emission sources and pollutants, and show how the burden is distributed among demographic and socioeconomic subgroups. The analysis uses spatially-resolved estimates of exposures, baseline health rates, age-stratified populations, and demographic characteristics that serve as proxies for increased vulnerability, e.g., race/ethnicity and income. Based on current levels, exposures to fine particulate matter (PM2.5), ozone (O3), sulfur dioxide (SO2), and nitrogen dioxide (NO2) are responsible for more than 10,000 disability-adjusted life years (DALYs) per year, causing an annual monetized health impact of $6.5 billion. This burden is mainly driven by PM2.5 and O3 exposures, which cause 660 premature deaths each year among the 945,000 individuals in the study area. NO2 exposures, largely from traffic, are important for respiratory outcomes among older adults and children with asthma, e.g., 46% of air-pollution related asthma hospitalizations are due to NO2 exposures. Based on quantitative inequality metrics, the greatest inequality of health burdens results from industrial and traffic emissions. These metrics also show disproportionate burdens among Hispanic/Latino populations due to industrial emissions, and among low income populations due to traffic emissions. Attributable health burdens are a function of exposures, susceptibility and vulnerability (e.g., baseline incidence rates), and population density. Because of these dependencies, inequality metrics should be calculated using the attributable health burden when feasible to avoid potentially underestimating inequality. Quantitative health impact and inequality analyses can inform health and environmental justice evaluations, providing important information to decision makers for prioritizing strategies to address exposures at the local level

    Environmental and occupational pesticide exposure and numan sperm parameters: A systematic review

    No full text
    Of continuing concern are the associations between environmental or occupational exposures to pesticides and semen quality parameters. Prior research has indicated that there may be associations between exposure to pesticides of a variety of classes and decreased sperm health. The intent of this review was to summarize the most recent evidence related to pesticide exposures and commonly used semen quality parameters, including concentration, motility and morphology. The recent literature was searched for studies published between January, 2007 and August, 2012 that focused on environmental or occupational pesticide exposures. Included in the review are 17 studies, 15 of which reported significant associations between exposure to pesticides and semen quality indicators. Two studies also investigated the roles genetic polymorphisms may play in the strength or directions of these associations. Specific pesticides targeted for study included dichlorodiphenyltrichloroethane (DDT), hexachlorocyclohexane (HCH), and abamectin. Pyrethroids and organophosphates were analyzed as classes of pesticides rather than as individual compounds, primarily due to the limitations of exposure assessment techniques. Overall, a majority of the studies reported significant associations between pesticide exposure and sperm parameters. A decrease in sperm concentration was the most commonly reported finding among all of the pesticide classes investigated. Decreased motility was also associated with exposures to each of the pesticide classes, although these findings were less frequent across studies. An association between pesticide exposure and sperm morphology was less clear, with only two studies reporting an association. The evidence presented in this review continues to support the hypothesis that exposures to pesticides at environmentally or occupationally relevant levels may be associated with decreased sperm health. Future work in this area should focus on associations between specific pesticides or metabolic products and sperm quality parameters. Analysis of effects of varying genetic characteristics, especially in genes related to pesticide metabolism, also needs further attention

    Data associated with "Health and environmental justice implications of retiring two coal‐fired power plants in the southern Front Range region of Colorado"

    No full text
    R code used to conduct the health impact assessment is available at https://doi.org/10.5281/zenodo.2669422.The dataset includes model predictions of ozone and particulate matter less 2.5 microns in diameter over southern Colorado during years of 2017 and 2035. These files are stored as netCDF files.Despite improvements in air quality over the past 50 years, ambient air pollution remains an important public health issue in the United States. In particular, emissions from coal-fired power plants still have a substantial impact on both nearby and regional populations. Of particular concern is the potential for this impact to fall disproportionately on low-income communities and communities of color. We conducted a quantitative health impact assessment to estimate the health benefits of the proposed decommissioning of coal-fired boilers at two electricity generating stations in the Southern Front Range region of Colorado. We estimated changes in exposures to fine particulate matter (PM2.5) and ozone due to reductions in emission using the Community Multiscale Air Quality model and predicted avoided health impacts and related economic values. In addition to estimating health benefits of reduced emissions, we assessed the distribution of these benefits by population-level socioeconomic status using concentration curves. Across the study area, decommissioning the power plants would result in 4 (95% CI: 2 – 6) avoided premature deaths each year due to reduced PM2.5 exposures and greater reductions in hospitalizations and other morbidities. Health benefits resulting from the modeled shutdowns were greatest in areas with lower median incomes, lower percentages of high school graduates, and higher proportions of households with incomes below the poverty line. However, in our study area, we did not observe higher benefits when examining area-level percentage of residents of color, largely due to the distribution of the smaller proportion of the population in the region that identifies as non-White. Our results suggest that decommissioning the power plants in the southern Front Range and replacing them with zero-emissions sources could have broad public health benefits for residents of Colorado, with larger benefits for those that are socially disadvantaged and historically bear greater environmental pollution burdens. These results also suggested that researchers and decision makers need to consider the unique demographics of their study areas to ensure that important opportunities to reduce health disparities associated with point-source pollution.American Lung Association
    corecore