33 research outputs found

    Comprehensive assessment of a peer mentor program for first-year students

    Get PDF
    College students who engage in first-year programs such as peer mentorship are correlated with higher achievement. Peer mentorship can also have a significant impact on students\u27 feelings of belonging to their campus community. This mixed-methods study will provide a comprehensive assessment of a Class Leader (CL) program. Data will include first-semester outcomes (i.e., first-term GPA; retention) for all students (N ~ 1850) and first-generation students as compared to non-participants, survey responses (n ~ 471) about students\u27 experiences with CLs and perceptions related to the program, and focus group data from students, CLs, and instructors at the end of the semester

    The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey

    Get PDF
    The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperature estimates for stars with T_eff<5000 K and in metallicity estimates for stars with [Fe/H]>-0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SDSS-III Sloan Extension for Galactic Understanding and Exploration-2 (SEGUE-2). The astrometry error introduced in the DR8 imaging catalogs has been corrected in the DR9 data products. The next data release for SDSS-III will be in Summer 2013, which will present the first data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) along with another year of data from BOSS, followed by the final SDSS-III data release in December 2014.Comment: 9 figures; 2 tables. Submitted to ApJS. DR9 is available at http://www.sdss3.org/dr

    The Eleventh and Twelfth Data Releases of the Sloan Digital Sky Survey: Final Data from SDSS-III

    Get PDF
    The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All of the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12 adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 deg2 of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include the measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 deg2 of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 deg2; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra. \ua9 2015. The American Astronomical Society

    4MOST: Project overview and information for the First Call for Proposals

    Get PDF
    We introduce the 4-metre Multi-Object Spectroscopic Telescope (4MOST), a new high-multiplex, wide-field spectroscopic survey facility under development for the four-metre-class Visible and Infrared Survey Telescope for Astronomy (VISTA) at Paranal. Its key specifications are: a large field of view (FoV) of 4.2 square degrees and a high multiplex capability, with 1624 fibres feeding two low-resolution spectrographs (R=λ/Δλ∌6500R = \lambda/\Delta\lambda \sim 6500), and 812 fibres transferring light to the high-resolution spectrograph (R∌20 000R \sim 20\,000). After a description of the instrument and its expected performance, a short overview is given of its operational scheme and planned 4MOST Consortium science; these aspects are covered in more detail in other articles in this edition of The Messenger. Finally, the processes, schedules, and policies concerning the selection of ESO Community Surveys are presented, commencing with a singular opportunity to submit Letters of Intent for Public Surveys during the first five years of 4MOST operations

    The development and implementation of a human-caused wildland fire occurrence prediction system for the province of Ontario, Canada

    No full text
    We describe the development and implementation of an operational human-caused wildland fire occurrence prediction (FOP) system in the province of Ontario, Canada. A suite of supervised statistical learning models was developed using more than 50 years of high-resolution data over a 73.8 million ha study area, partitioned into Ontario’s Northwest and Northeast Fire Management Regions. A stratified modelling approach accounts for different seasonal baselines regionally and for a set of communities in the Far North. Response-dependent sampling and modelling techniques using logistic generalized additive models are used to develop a fine-scale, spatiotemporal FOP system with models that include nonlinear relationships with key predictors. These predictors include inter- and intra-annual temporal trends, spatial trends, ecological variables, fuel moisture measures, human land-use characteristics, and a novel measure of human activity. The system produces fine-scale, spatially explicit maps of daily probabilistic human-caused FOP based on locally observed conditions along with point and interval predictions for the expected number of fires in each region. A simulation-based approach for generating the prediction intervals is described. Daily predictions were made available to fire management practitioners through a custom dashboard and integrated into daily regional planning to support detection and fire suppression preparedness needs.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
    corecore