127 research outputs found

    Mafic dykes as monitors of hp granulite facies metamorphism in the Grenville front tectonic zone (western Quebec)

    Get PDF
    International audienceMetamorphosed mafic dykes and pods in the Grenville Front Tectonic Zone (GFTZ) are correlated, on the bases of map patterns and geochemical trends, with Paleo- and Mesoproterozoic dykes that cross-cut Archean rocks of the foreland, NW of the Grenville Front. The GFTZ consists of a SE-dipping 30 km thick slab of quartzo-feldspathic granulites and biotite–garnet (±opx) gneisses overriding, along the McLaurin thrust, a 4 km thick zone of muscovite–sillimanite micaschists that abuts on the Grenville Front. The granulite slab in turn dips under amphibolite-grade migmatites of the Réservoir Dozois terrane along the Dorval detachment. According to published U–Pb and new U–Th–Pb ages on monazite, the granulites, the gneisses and the schists of the GFTZ were metamorphosed at ca. 2.7–2.8 Ga and reworked at ca. 1.0 Ga (Grenvillian). Proterozoic mafic dykes and pods cross-cutting the GFTZ are thus monocyclic, i.e. they went through the Grenvillian metamorphic event only. Several of these metamorphosed mafic dykes and pods have preserved evidence of emplacement in a brittle regime such as intersection of the gneissic foliation, chilled margins, magmatic layering, this in spite of a strong metamorphic overprint attested by coronitic fabrics. In particular, metamorphosed mafic dykes of the granulite slab, contain large pyroxenes rimmed by garnet coronas with minute quartz inclusions, suggesting the reaction pl + opx = grt + qtz. These garnet coronas, in turn, are locally replaced by symplectites of opx, hbl, pl and qtz, probably formed through back-reactions grt + cpx + qtz = pl + opx and grt + cpx = hbl + qtz. Thermobarometric calculations using the above assemblages indicate peak equilibration at about 1.2–1.5 GPa at temperatures of about 800 °C followed by a quasi-isothermal decompression down to 0.9 GPa at temperatures around 700 °C. Proterozoic mafic dykes thus record a Grenvillian HP granulite metamorphism resulting from burial of upper crustal levels down to sub-Moho depths with concomitant heating. This event was followed by rapid exhumation of the GFTZ zone probably controlled by normal displacement along the Dorval detachment

    Migmatite formation in a crustal-scale shear zone during continental subduction: an example from a high-pressure granitic orthogneiss from the Orlica-Śnieżnik Dome (NE Bohemian Massif)

    Get PDF
    Petrological study and pseudosection modelling have been carried out in high-grade orthogneisses of the southern domain of the Orlica- Snieznik Dome (NE Bohemian Massif). The studied samples are from an outcrop dominated by two deformation fabrics, a sub-horizontal S1 foliation defined by bands of recrystallized K-feldspar, quartz and plagioclase folded by centimetre- to several metre-scale close to isoclinal folds associated with development of a new subvertical N-S trending foliation S2. Based on field features and textural observations, a gradual transition from banded mylonitic orthogneiss (Type I) to stromatitic (Type II), schlieren (type III) and nebulitic (type IV) textures typical of migmatities can be distinguished. The banded orthogneiss is composed of almost monomineral recrystallized K-feldspar layers (2 to 10 mm thick) alternating with layers of plagioclase and quartz (1 to 4mm thick), parallel to the S1 limb and the axial planar S2 foliation. The stromatitic migmatite shows 1 to 4 mm thick layers with macroscopically diffuse boundaries between plagioclase, quartz and K-feldspar rich domains. Boundaries between quartz and feldspar layers are poorly defined and interlobed with adjacent minerals. The schlieren migmatite is almost isotropic preserving small K-feldspar-rich domains within a matrix characterized by random distribution of phases, whereas in the nebulitic migmatite the microstructure is completely isotropic characterized by random distribution of phases. The transition from the Type I to IV is characterized by increasing nucleation of interstitial phases along like-like grain boundaries, by a decrease of grain size of all phases and by progressive disintegration of recrystallized K-feldspar grains by embayments of fine-grained myrmekite. The mineral assemblage of all types consists of biotite, white micas, garnet, quartz, K-feldspar and plagioclase, and accessory apatite, ilmenite, zircon and monazite. In the mineral equilibria modelling, the core of garnet (alm0.58, py0.02-0.03, grs0.34, sps0.05) and phengite (Si = 3.38-3.20 p.f.u) is consistent with a P-T peak at 10-13 kbar and 720-750 C in the dominant grt-bt-ph-rt-qtz-pl-kfs mineral assemblage. The garnet rim (alm0.68, py0.02-0.03, grs0.11, sps0.21), white mica rim (Si = 3.10 p.f.u) together with unzoned biotite (XFe = 0.76-0.78) match the modelled isopleths in the middle-P part of the grt-bt-ph-ilm-qtz-pl-kfs field to reach the solidus at 78 kbar and 630650 C. In addition, the absence of prograde garnet zoning in the Type I to III suggests that the garnet was completely re-equilibrated during the retrograde history, whereas in the Type IV the HP garnet chemistry was preserved. This is discussed in frame of melt presence in different migmatite types along their P-T path. Based on mineral equilibria modelling it is argued for fluid/melt-fluxed melting at HP conditions and on exhumation. The migmatite textural types are a result of grain-scale melt migration process and not of a localized melt transport in dykes as known from metasediments

    Syn-deformational melt percolation through a high-pressure orthogneiss and the exhumation of a subducted continental wedge (Orlica-Śnieżnik Dome, NE Bohemian Massif)

    Get PDF
    High-pressure granitic orthogneiss of the south-eastern Orlica-Śnieżnik Dome (NE Bohemian Massif) shows relics of a shallow-dipping S1 foliation, reworked by upright F2 folds and a mostly pervasive N-S trending subvertical axial planar S2 foliation. Based on macroscopic observations, a gradual transition perpendicular to the subvertical S2 foliation from banded to schlieren and nebulitic orthogneiss was distinguished. All rock types comprise plagioclase, K-feldspar, quartz, white mica, biotite and garnet. The transition is characterized by increasing presence of interstitial phases along like-like grain boundaries and by progressive replacement of recrystallized K-feldspar grains by fine-grained myrmekite. These textural changes are characteristic for syn-deformational grain-scale melt percolation, which is in line with the observed enrichment of the rocks in incompatible elements such as REEs, Ba, Sr, and K, suggesting open-system behaviour with melt passing through the rocks. The P-T path deduced from the thermodynamic modelling indicates decompression from ~15−16 kbar and ~650-740 ºC to ~6 kbar and ~640 ºC. Melt was already present at the P-T peak conditions as indicated by the albitic composition of plagioclase in films, interstitial grains and in myrmekite. The variably re-equilibrated garnet suggests that melt content may have varied along the decompression path, involving successively both melt gain and loss. The 6-8 km wide zone of vertical foliation and migmatite textural gradients is interpreted as vertical crustal-scale channel where the grain-scale melt percolation was associated with horizontal shortening and vertical flow of partially molten crustal wedge en masse

    Crustal influx, indentation, ductile thinning and gravity redistribution in a continental wedge: Building a Moldanubian mantled gneiss dome with underthrust Saxothuringian material (European Variscan belt)

    Get PDF
    27 p.International audience[1] The contribution of lateral forces, vertical load, gravity redistribution and erosion to the origin of mantled gneiss domes in internal zones of orogens remains debated. In the Orlica-Snieznik dome (Moldanubian zone, European Variscan belt), the polyphase tectono-metamorphic history is initially characterized by the development of subhorizontal fabrics associated with medium- to high-grade metamorphic conditions in different levels of the crust. It reflects the eastward influx of a Saxothuringian-type passive margin sequence below a Teplá-Barrandian upper plate. The ongoing influx of continental crust creates a thick felsic orogenic root with HP rocks and migmatitic orthogneiss. The orogenic wedge is subsequently indented by the eastern Brunia microcontinent producing a multiscale folding of the orogenic infrastructure. The resulting kilometre-scale folding is associated with the variable burial of the middle crust in synforms and the exhumation of the lower crust in antiforms. These localized vertical exchanges of material and heat are coeval with a larger crustal-scale folding of the whole infrastructure generating a general uplift of the dome. It is exemplified by increasing metamorphic conditions and younging of 40Ar/39Ar cooling ages toward the extruded migmatitic subdomes cored by HP rocks. The vertical growth of the dome induces exhumation by pure shear-dominated ductile thinning laterally evolving to non-coaxial detachment faulting, while erosion feeds the surrounding sedimentary basins. Modeling of the Bouguer anomaly grid is compatible with crustal-scale mass transfers between a dense superstructure and a lighter infrastructure. The model implies that the Moldanubian Orlica-Snieznik mantled gneiss dome derives from polyphase recycling of Saxothuringian material

    Influence of time, temperature, confining pressure and fluid content on the experimental compaction of spherical grains

    Get PDF
    Theoretical models of compaction processes, such as for example intergranular pressure-solution (IPS), focus on deformation occurring at the contacts between spherical grains that constitute an aggregate. In order to investigate the applicability of such models, and to quantify the deformation of particles within an aggregate, isostatic experiments were performed in cold-sealed vessels on glass sphere aggregates at 200 MPa confining pressure and 350 degrees C with varying amounts of fluid

    Structure and metabolic potential of the prokaryotic communities from the hydrothermal system of Paleochori Bay, Milos, Greece

    Get PDF
    IntroductionShallow hydrothermal systems share many characteristics with their deep-sea counterparts, but their accessibility facilitates their study. One of the most studied shallow hydrothermal vent fields lies at Paleochori Bay off the coast of Milos in the Aegean Sea (Greece). It has been studied through extensive mapping and its physical and chemical processes have been characterized over the past decades. However, a thorough description of the microbial communities inhabiting the bay is still missing.MethodsWe present the first in-depth characterization of the prokaryotic communities of Paleochori Bay by sampling eight different seafloor types that are distributed along the entire gradient of hydrothermal influence. We used deep sequencing of the 16S rRNA marker gene and complemented the analysis with qPCR quantification of the 16S rRNA gene and several functional genes to gain insights into the metabolic potential of the communities.ResultsWe found that the microbiome of the bay is strongly influenced by the hydrothermal venting, with a succession of various groups dominating the sediments from the coldest to the warmest zones. Prokaryotic diversity and abundance decrease with increasing temperature, and thermophilic archaea overtake the community.DiscussionRelevant geochemical cycles of the Bay are discussed. This study expands our limited understanding of subsurface microbial communities in acidic shallow-sea hydrothermal systems and the contribution of their microbial activity to biogeochemical cycling

    The strain-dependent spatial evolution of garnet in a high-pressure ductile shear zone from the Western Gneiss Region (Norway): a synchrotron X-ray microtomography study

    Get PDF
    Reaction and deformation microfabrics provide key information to understand the thermodynamic and kinetic controls of tectono‐metamorphic processes, however, they are usually analysed in two dimensions, omitting important information regarding the third spatial dimension. We applied synchrotron‐based X‐ray microtomography to document the evolution of a pristine olivine gabbro into a deformed omphacite–garnet eclogite in four dimensions, where the 4th dimension is represented by the degree of strain. In the investigated samples, which cover a strain gradient into a shear zone from the Western Gneiss Region (Norway), we focused on the spatial transformation of garnet coronas into elongated garnet clusters with increasing strain. The microtomographic data allowed quantification of garnet volume, shape and spatial arrangement evolution with increasing strain. The microtomographic observations were combined with light microscope and backscatter electron images as well as electron microprobe (EMPA) and electron backscatter diffraction (EBSD) analysis to correlate mineral composition and orientation data with the X‐ray absorption signal of the same mineral grains. With increasing deformation, the garnet volume almost triples. In the low‐strain domain, garnet grains form a well interconnected large garnet aggregate that develops throughout the entire sample. We also observed that garnet coronas in the gabbros never completely encapsulate olivine grains. In the most highly deformed eclogites, the oblate shapes of garnet clusters reflect a deformational origin of the microfabrics. We interpret the aligned garnet aggregates to direct synkinematic fluid flow, and consequently influence the transport of dissolved chemical components. EBSD analyses reveal that garnet shows a near‐random crystal preferred orientation that testifies no evidence for crystal plasticity. There is, however evidence for minor fracturing, neo‐nucleation and overgrowth. Microprobe chemical analysis revealed that garnet compositions progressively equilibrate to eclogite facies, becoming more almandine‐rich. We interpret these observations as pointing to a mechanical disintegration of the garnet coronas during strain localization, and their rearrangement into individual garnet clusters through a combination of garnet coalescence and overgrowth while the rock was deforming

    Atomic spectrometry update: Review of advances in the analysis of metals, chemicals and materials

    Get PDF
    There has been a large increase in the number of papers published that are relevant to this review over this review period. The growth in popularity of LIBS is rapid, with applications being published for most sample types. This is undoubtedly because of its capability to analyse in situ on a production line (hence saving time and money) and its minimally destructive nature meaning that both forensic and cultural heritage samples may be analysed. It also has a standoff analysis capability meaning that hazardous materials, e.g. explosives or nuclear materials, may be analysed from a safe distance. The use of mathematical algorithms in conjunction with LIBS to enable improved accuracy has proved a popular area of research. This is especially true for ferrous and non-ferrous samples. Similarly, chemometric techniques have been used with LIBS to aid in the sorting of polymers and other materials. An increase in the number of papers in the subject area of alternative fuels was noted. This was at the expense of papers describing methods for the analysis of crude oils. For nanomaterials, previous years have seen a huge number of single particle and field flow fractionation characterisations. Although several such papers are still being published, the focus seems to be switching to applications of the nanoparticles and the mechanistic aspects of how they retain or bind with other analytes. This is the latest review covering the topic of advances in the analysis of metals, chemicals and materials. It follows on from last year's review1-6 and is part of the Atomic Spectrometry Updates series

    Development of a capillary electrophoresis separation of uranium, plutonium and lanthanides coupled with MC-ICPMS for isotope ratio measurements

    Full text link
    La caractérisation isotopique des éléments présents dans les combustibles nucléaires irradiés est d'une importance majeure pour la qualification et la validation des codes de calculs neutroniques ainsi que la gestion des déchets nucléaires. Le protocole conventionnel pour l'analyse de ces échantillons nécessite plusieurs étapes de séparation par chromatographie liquide. L'uranium (U), le plutonium (Pu) et une fraction contenant les produits de fission et les actinides mineurs, sont séparés par chromatographie sur résine échangeuse d'ions puis les fractions purifiées d'U et de Pu sont analysées par spectrométrie de masse. L'objectif de cette thèse consiste à étudier et développer un protocole analytique applicable sur des échantillons de type combustibles irradiés et employant une technique séparative transposable sur plateforme miniaturisée qui devra pouvoir être couplée à un spectromètre de masse à source plasma et à système multicollection (ICPMS-MC) afin de réaliser en ligne l'analyse isotopique et élémentaire des éléments présents dans le combustible irradié. Une méthode de séparation de l'U, du thorium (Th) et des lanthanides par électrophorèse capillaire (EC) avec préconcentration de l'échantillon a été développée en utilisant le Th(IV) comme analogue chimique du Pu(IV). L'électrolyte de séparation se compose d'acide acétique 0,25M comme complexant ainsi que de sel d'ammonium 0,1M, pour ajuster la force ionique et permettre la préconcentration. Le montage d'EC a été adapté afin d'être intégré en boite à gants et couplé à un ICPMS-MC. La séparation de l'Am de l'U et du Pu a été réalisée sur quelques nL d'une solution de combustible irradié.Precise isotopic and elemental characterization of nuclear spent fuel is a major concern for the validation of the neutronic calculation codes and waste management in the nuclear industry. The conventional protocol for the analysis of nuclear fuel samples uses several purification steps by liquid chromatography. Uranium (U) and plutonium (Pu) and a fraction containing fission products and minor actinides are separated using ion exchange chromatography prior to the isotopic characterization of the U and Pu fractions by multi-collector mass spectrometry techniques. The objective of the work presented is to develop a new analytical approach based on miniaturized separation techniques like capillary and microfluidic electrophoresis coupled with a multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) detection for online isotopic ratio measurements. An electrophoretic separation method of U, Pu and fission products with a stacking step was developed using thorium (Th) as a chemical analog for Pu(IV). The separation electrolyte is composed of acetic acid (0.25M) as complexing agent for the separation and 0.1M of ammonium salt to realize the stacking step. The instrumentation was adapted to be used in glove box and directly coupled to a MC-ICPMS. The separation of Am, Pu and U was realized with few nL of a spent nuclear fuel solution. The reproducibilities obtained on the isotope ratios were in the order of few ‰ and comparable with those obtained with the conventional analytical protocol. This new protocol will help to reduce the quantities analyzed from µg to ng, the liquid waste volume scale from mL to µL and the sample volumes form µL to nL
    corecore