282 research outputs found

    Light Propagation in Inhomogeneous Universes. V. Gravitational Lensing of Distant Supernovae

    Full text link
    We use a series of ray-tracing experiments to determine the magnification distribution of high-redshift sources by gravitational lensing. We determine empirically the relation between magnification and redshift, for various cosmological models. We then use this relation to estimate the effect of lensing on the determination of the cosmological parameters from observations of high-z supernovae. We found that, for supernovae at redshifts z<1.8 the effect of lensing is negligible compared to the intrinsic uncertainty in the measurements. Using mock data in the range 1.8<z<8, we show that the effect of lensing can become significant. Hence, if a population of very-high-z supernovae was ever discovered, it would be crucial to fully understand the effect of lensing, before these SNe could be used to constrain cosmological models. We show that the distance moduli m-M for an open CDM universe and a LCDM universe are comparable at z>2. Therefore if supernovae up to these redshifts were ever discovered, it is still the ones in the range 0.3<z<1 that would distinguish these two models.Comment: 15 pages. Accepted for publication in The Astrophysical Journal. References adde

    Chemodynamics of dwarf galaxies under ram-pressure

    Full text link
    By implementing a dynamic wind-tunnel model in a smoothed-particle chemodynamic/hydrodynamic simulation suite, we have investigated the effects of ram pressure and tidal forces on dwarf galaxies similar to the Magellanic Clouds, within host galaxies with gas and dark matter halos that are varied, to compare the relative effects of tides and ram pressure. We concentrate on how the distributions of metals are affected by interactions. We find that while ram pressure and tidal forces have some effect on dwarf galaxy outflows, these effects do not produce large differences in the metal distributions of the dwarf disks other than truncation in the outer regions in some cases, and that confinement from the host galaxy gas halo appears to be more significant than ram pressure stripping. We find that stochastic variations in the star formation rate can explain the remaining variations in disk metal properties. This raises questions on the cause of low metallicities in dwarf galaxies.Comment: Submitted to ApJ, under 2nd review (very minor revisions

    Explosions and Outflows during Galaxy Formation

    Get PDF
    We consider an explosion at the center of a halo which forms at the intersection of filaments inside a cosmological pancake, a convenient test-bed model for galaxy formation. ASPH/P3M simulations reveal that such explosions are anisotropic. The energy and metals are channeled into the low density regions, away from the pancake. The pancake remains essentially undisturbed, even if the explosion is strong enough to blow away all the gas located inside the halo and reheat the IGM surrounding the pancake. Infall quickly replenishes this ejected gas and gradually restores the gas fraction as the halo continues to grow. Estimates of the collapse epoch and SN energy-release for galaxies of different mass in the CDM model can relate these results to scale-dependent questions of blow-out and blow-away and their implication for early IGM heating and metal enrichment and the creation of gas-poor dwarf galaxies.Comment: To appear in "The 20th Texas Symposium on Relativistic Astrophysics", eds. H. Martel and J.C. Wheeler, AIP, in press (2001) (3 pages, 2 figures

    A Convenient Set of Comoving Cosmological Variables and Their Application

    Get PDF
    We present a set of cosmological variables, called "supercomoving variables," which are particularly useful for describing the gas dynamics of cosmic structure formation. For ideal gas with gamma=5/3, the supercomoving position, velocity, density, temperature, and pressure are constant in time in a uniform, isotropic, adiabatically expanding universe. Expressed in terms of these supercomoving variables, the cosmological fluid conservation equations and the Poisson equation closely resemble their noncosmological counterparts. This makes it possible to generalize noncosmological results and techniques to cosmological problems, for a wide range of cosmological models. These variables were initially introduced by Shandarin for matter-dominated models only. We generalize supercomoving variables to models with a uniform component corresponding to a nonzero cosmological constant, domain walls, cosmic strings, a nonclumping form of nonrelativistic matter (e.g. massive nettrinos), or radiation. Each model is characterized by the value of the density parameter Omega0 of the nonrelativistic matter component in which density fluctuation is possible, and the density parameter OmegaX of the additional, nonclumping component. For each type of nonclumping background, we identify FAMILIES within which different values of Omega0 and OmegaX lead to fluid equations and solutions in supercomoving variables which are independent of Omega0 and OmegaX. We also include the effects of heating, radiative cooling, thermal conduction, viscosity, and magnetic fields. As an illustration, we describe 3 familiar cosmological problems in supercomoving variables: the growth of linear density fluctuations, the nonlinear collapse of a 1D plane-wave density fluctuation leading to pancake formation, and the Zel'dovich approximation.Comment: 38 pages (AAS latex) + 2 figures (postscript) combined in one gzip-ed tar file. Identical to original posted version, except for addition of 2 references. Monthly Notices of the R.A.S., in pres
    corecore