3 research outputs found

    Extending electron orbital precession to the molecular case: Can orbital alignment be used to observe wavepacket dynamics?

    Full text link
    The complexity of ultrafast molecular photoionization presents an obstacle to the modelling of pump-probe experiments. Here, a simple optimized model of atomic rubidium is combined with a molecular dynamics model to predict quantitatively the results of a pump-probe experiment in which long range rubidium dimers are first excited, then ionized after a variable delay. The method is illustrated by the outline of two proposed feasible experiments and the calculation of their outcomes. Both of these proposals use Feshbach 87Rb2 molecules. We show that long-range molecular pump-probe experiments should observe spin-orbit precession given a suitable pump-pulse, and that the associated high-frequency beat signal in the ionization probability decays after a few tens of picoseconds. If the molecule was to be excited to only a single fine structure state state, then a low-frequency oscillation in the internuclear separation would be detectable through the timedependent ionization cross section, giving a mechanism that would enable observation of coherent vibrational motion in this molecule.Comment: 9 pages, 10 figures, PRA submissio

    A pump-probe study of the formation of rubidium molecules by ultrafast photoassociation of ultracold atoms

    Full text link
    An experimental pump-probe study of the photoassociative creation of translationally ultracold rubidium molecules is presented together with numerical simulations of the process. The formation of loosely bound excited-state dimers is observed as a first step towards a fully coherent pump-dump approach to the stabilization of Rb2_2 into its lowest ground vibrational states. The population that contributes to the pump-probe process is characterized and found to be distinct from a background population of pre-associated molecules.Comment: Accepted for publication in Phys. Rev. A (10 pages, 9 figures

    Demonstrating coherent control in 85Rb2 using ultrafast laser pulses: a theoretical outline of two experiments

    Full text link
    Calculations relating to two experiments that demonstrate coherent control of preformed rubidium-85 molecules in a magneto-optical trap using ultrafast laser pulses are presented. In the first experiment, it is shown that pre-associated molecules in an incoherent mixture of states can be made to oscillate coherently using a single ultrafast pulse. A mechanism that can transfer molecular population to more deeply bound vibrational levels is used in the second. Optimal parameters of the control pulse are presented for the application of the mechanism to molecules in a magneto-optical trap. The calculations make use of an experimental determination of the initial state of molecules photoassociated by the trapping lasers in the magneto-optical trap and use shaped pulses consistent with a standard ultrafast laser system.Comment: 8 pages, 9 figures, PRA, 80, 033403 (2009
    corecore