18 research outputs found

    UV Polymerization of Methacrylates—Preparation and Properties of Novel Copolymers

    No full text
    More environmentally friendly polymeric materials for use in corrosive conditions were obtained in the process of UV polymerization of terpene methacrylate monomers: geranyl methacrylate and citronellyl methacrylate and the commercially available monomer methyl methacrylate. Selected properties (solvent resistance, chemical resistance, glass transition temperature, thermal stability, and decomposition course during heating) were evaluated. It was found that the properties of the materials directly depended on the monomer percentage and the conditioning temperatures used. An increase in the geranyl or citronellyl methacrylate monomer content in the copolymers reduced the solubility and chemical resistance of the materials post-cured at 50 °C. The samples post-cured at 120 °C were characterized by high resistance to polar and non-polar solvents and the chemical environment, regardless of the percentage composition. The glass transition temperatures for samples conditioned at 120 °C increased with increasing content of methyl methacrylate in the copolymers. The thermal stability of copolymers depended on the conditioning temperatures used. It was greater than 200 °C for most copolymers post-cured at 120 °C. The process of pyrolysis of copolymers led to the emission of geranyl methacrylate, citronellyl methacrylate, and methyl methacrylate monomers as the main pyrolysis volatiles

    Microwave-Assisted Synthesis of Cinnamyl Long Chain Aroma Esters

    No full text
    Cinnamyl long chain aroma esters were prepared by using the conventional and microwave-assisted methods. The esterification reaction of naturally occurring 3-phenyl-prop-2-en-1-ol and different chain lengths acidic and diol reagents was carried out at the temperature of 140 °C under solvent free conditions. As acidic reagents, oxolane-2,5-dione, oxane-2,6-dione, hexanedioic acid and decanedioic acid were applied. Ethane-1,2-diol and 2,2ʹ-[oxybis(2,1-ethandiyloxy)]diethanol were used as diol reagents. The synthesis of high molecular mass cinnamyl esters under conventional method conditions requires a long time to obtain high yields. The studies confirm that by using microwave irradiation, it is possible to reduce the reaction times to only 10–20 min. The structures of prepared esters were confirmed on the basis of FTIR, 1H-NMR and 13C-NMR. In addition, the newly obtained cinnamyl long chain esters were tested for their thermal properties. The TG studies proved the high thermal resistance of the obtained esters under inert and oxidative conditions
    corecore