30 research outputs found

    Nanoparticle as a novel tool in hyperthermic intraperitoneal and pressurized intraperitoneal aerosol chemotheprapy to treat patients with peritoneal carcinomatosis

    Get PDF
    The treatment of peritoneal surface malignances has changed considerably over the last thirty years. Unfortunately, the palliative is the only current treatment for peritoneal carcinomatosis (PC). Two primary intraperitoneal chemotherapeutic methods are used. The first is combination of cytoreductive surgery (CRS) and Hyperthermic IntraPEritoneal Chemotherapy (HIPEC), which has become the gold standard for many cases of PC. The second is Pressurized IntraPeritoneal Aerosol Chemotheprapy (PIPAC), which is promising direction to minimally invasive as safedrug delivery. These methods were improved through multicenter studies and clinical trials that yield important insights and solutions. Major method development has been made through nanomedicine, specifically nanoparticles. Here, we are presenting the latest advances of nanoparticles and their application to precision diagnostics and improved treatment strategies for PC. These advances will likely develop both HIPEC and PIPAC methods that used for in vitro and in vivo studies. Several benefits of using nanoparticles will be discussed including: 1) Nanoparticles as drug delivery systems; 2) Nanoparticles and Near Infrred (NIR) Irradiation; 3) use of nanoparticles in perioperative diagnostic and individualized treatment planning; 4) use of nanoparticles as anticancer dressing's, hydrogels and as active beeds for optimal reccurence prevention; and 5) finally the curent in vitro and in vivo studies and clinical trials of nanoparticles. The current review highlighted use of nanoparticles as novel tools in improving drug delivery to be effective for treatment patients with peritoneal carcinomatosis

    Application of Bladder Acellular Matrix in Urinary Bladder Regeneration: The State of the Art and Future Directions

    No full text
    Construction of the urinary bladder de novo using tissue engineering technologies is the “holy grail” of reconstructive urology. The search for the ideal biomaterial for urinary bladder reconstruction has been ongoing for decades. One of the most promising biomaterials for this purpose seems to be bladder acellular matrix (BAM). In this review we determine the most important factors, which may affect biological and physical properties of BAM and its regeneration potential in tissue engineered urinary bladder. We also point out the directions in modification of BAM, which include incorporation of exogenous growth factors into the BAM structure. Finally, we discuss the results of the urinary bladder regeneration with cell seeded BAM

    Anti-proliferative and cytotoxic activity of rosuvastatin against melanoma cells

    No full text
    Introduction : Statins are considered potential candidate agents for melanoma chemoprevention. Statin-induced mevalonate pathway inhibition leads to reduction of cholesterol synthesis and also to decreased cellular levels of non-steroidal isoprenoids, geranylgeranyl pyrophosphate and farnesyl pyrophosphate. This results in the impairment of protein prenylation which affects carcinogenesis. Aim : To analyze anti-proliferative and cytotoxic activity of rosuvastatin against melanoma cells. Material and methods : Melanoma cell lines (A375 and WM1552C) and normal fibroblasts (BJ) were used as the primary research material. Cells were treated with rosuvastatin at concentrations ranging from 0.01 µM to 10 µM. Cell viability was analyzed with the use of an MTT assay. Expression of proliferation marker Ki67 was assessed on the basis of immunofluorescence staining. Results: Rosuvastatin reduced A375 and BJ cell viability in a time- and dose-dependent manner. After 72 h incubation, the IC 50 , half maximal inhibitory concentration, was 2.3 µM for melanoma cells and 7.4 µM for normal fibroblasts. In turn, rosuvastatin exhibited relatively lower activity against WM1552C cells. A significant reduction of Ki67 expression was also noted for BJ fibroblasts after prolonged incubation with the tested drug. Conclusions : The results indicate that the anti-melanoma properties of rosuvastatin are highly dependent on the tumor cell line assessed. However, the concentrations required to decrease melanoma cell viability in vitro exceed the plasma concentrations reached in patients treated with rosuvastatin at well-tolerated doses. What is more disturbing, reduction of proliferation and viability observed in BJ fibroblasts indicated that rosuvastatin at high doses may be toxic for normal cells

    Understanding the role of mesenchymal stem cells in urinary bladder regeneration—a preclinical study on a porcine model

    No full text
    Abstract Background The tissue engineering of urinary bladder advances rapidly reflecting clinical need for a new kind of therapeutic solution for patients requiring urinary bladder replacement. Majority of the bladder augmentation studies have been performed in small rodent or rabbit models. Insufficient number of studies examining regenerative capacity of tissue-engineered graft in urinary bladder augmentation in a large animal model does not allow for successful translation of this technology to the clinical setting. The aim of this study was to evaluate the role of adipose-derived stem cells (ADSCs) in regeneration of clinically significant urinary bladder wall defect in a large animal model. Methods ADSCs isolated from a superficial abdominal Camper’s fascia were labeled with PKH-26 tracking dye and subsequently seeded into bladder acellular matrix (BAM) grafts. Pigs underwent hemicystectomy followed by augmentation cystoplasty with BAM only (n = 10) or BAM seeded with autologous ADSCs (n = 10). Reconstructed bladders were subjected to macroscopic, histological, immunofluoresence, molecular, and radiological evaluations at 3 months post-augmentation. Results Sixteen animals (n = 8 for each group) survived the 3-month follow-up without serious complications. Tissue-engineered bladder function was normal without any signs of post-voiding urine residual in bladders and in the upper urinary tracts. ADSCs enhanced regeneration of tissue-engineered urinary bladder but the process was incomplete in the central graft region. Only a small percentage of implanted ADSCs survived and differentiated into smooth muscle and endothelial cells. Conclusions The data demonstrate that ADSCs support regeneration of large defects of the urinary bladder wall but the process is incomplete in the central graft region. Stem cells enhance urinary bladder regeneration indirectly through paracrine effect

    Does the Mesenchymal Stem Cell Source Influence Smooth Muscle Regeneration in Tissue-Engineered Urinary Bladders?

    No full text
    A variety of tissue engineering techniques utilizing different cells and biomaterials are currently being explored to construct urinary bladder walls de novo, but so far no approach is clearly superior. The aim of this study was to determine whether mesenchymal stem cells (MSCs) isolated from different sources, (bone marrow [BM-MSCs] and adipose tissue [ADSCs]), differ in their potential to regenerate smooth muscles in tissue-engineered urinary bladders and to determine an optimal number of MSCs for urinary bladder smooth muscle regeneration. Forty-eight rats underwent hemicystectomy and bladder augmentation with approximately 0.8 cm graft. In the first and second groups, urinary bladders were reconstructed with small intestinal submucosa (SIS) seeded with 10 Ă— 10 or 4 Ă— 10 ADSCs/cm , respectively. In the third and fourth groups, urinary bladders were augmented with SIS seeded with 10 Ă— 10 or 4 Ă— 10 BM-MSCs/cm , respectively. In the fifth group, urinary bladders were augmented with SIS without cells. The sixth group (control) was left intact. Smooth muscle regeneration was evaluated by real-time polymerase chain reaction (RT-PCR) and histological examinations. Histologically, there were no significant differences between urinary bladders augmented with ADSCs and BM-MSCs, but there was a marked increase in smooth muscle formation in bladders augmented with grafts seeded with MSCs in higher density (10 Ă— 10 /cm ) compared to lower density (4 Ă— 10 /cm ). Molecular analysis revealed that bladders reconstructed with ADSC-seeded grafts expressed higher levels of smooth muscle myosin heavy chain, caldesmon, and vinculin. Bladders augmented with unseeded SIS were fibrotic and devoid of smooth muscles. ADSCs and BM-MSCs have comparable smooth muscle regenerative potential, but the number of MSCs used for graft preparation significantly affects the smooth muscle content in tissue-engineered urinary bladders

    Is the poly (L- lactide- co- caprolactone) nanofibrous membrane suitable for urinary bladder regeneration?

    No full text
    The purpose of this study was to compare: a new five-layered poly (L-lactide-co-caprolactone) (PLC) membrane and small intestinal submucosa (SIS) as a control in rat urinary bladder wall regeneration. The five-layered poly (L-lactide-co-caprolactone) membrane was prepared by an electrospinning process. Adipose tissue was harvested from five 8-week old male Wistar rats. Adipose derived stem cells (ADSCs) were seeded in a density of 3Ă—10(6) cells/cm2 onto PLC membrane and SIS scaffolds, and cultured for 5-7 days in the stem cell culture medium. Twenty male Wistar rats were randomly divided into five equal groups. Augmentation cystoplasty was performed in a previously created dome defect. Groups: (I) PLC+ 3Ă—10(6)ADSCs; (II) SIS+ 3Ă—10(6)ADSCs; (III) PLC; (IV) SIS; (V) control. Cystography was performed after three months. The reconstructed urinary bladders were evaluated in H&E and Masson's trichrome staining. Regeneration of all components of the normal urinary bladder wall was observed in bladders augmented with cell-seeded SIS matrices. The urinary bladders augmented with SIS matrices without cells showed fibrosis and graft contraction. Bladder augmentation with the PLC membrane led to numerous undesirable events including: bladder wall perforation, fistula or diverticula formation, and incorporation of the reconstructed wall into the bladder lumen. The new five-layered poly (L-lactide-co-caprolactone) membrane possesses poorer potential for regenerating the urinary bladder wall compared with SIS scaffold
    corecore