6 research outputs found

    Biotin-Containing Third Generation Glucoheptoamidated Polyamidoamine Dendrimer for 5-Aminolevulinic Acid Delivery System

    No full text
    Polyamidoamine PAMAM dendrimer generation 3 (G3) was modified by attachment of biotin via amide bond and glucoheptoamidated by addition of α-D-glucoheptono-1,4-lacton to obtain a series of conjugates with a variable number of biotin residues. The composition of conjugates was determined by detailed 1-D and 2-D NMR spectroscopy to reveal the number of biotin residues, which were 1, 2, 4, 6, or 8, while the number of glucoheptoamide residues substituted most of the remaining primary amine groups of PAMAM G3. The conjugates were then used as host molecules to encapsulate the 5-aminolevulinic acid. The solubility of 5-aminolevulinic acid increased twice in the presence of the 5-mM guest in water. The interaction between host and guest was accompanied by deprotonation of the carboxylic group of 5-aminolevulinic acid and proton transfer into internal ternary nitrogen atoms of the guest as evidenced by a characteristic chemical shift of resonances in the 1H NMR spectrum of associates. The guest molecules were most likely encapsulated inside inner shell voids of the host. The number of guest molecules depended on the number of biotin residues of the host, which was 15 for non-biotin-containing glucoheptoamidated G3 down to 6 for glucoheptoamidated G3 with 8 biotin residues on the host surface. The encapsulates were not cytotoxic against Caco-2 cells up to 200-”M concentration in the dark. All encapsulates were able to deliver 5-aminolevulinic acid to cells but aqueous encapsulates were more active in this regard. Simultaneously, the reactive oxygen species were detected by staining with H2DCFDA in Caco-2 cells incubated with encapsulates. The amount of PpIX was sufficient for induction of reactive oxygen species upon 30-s illumination with a 655-nm laser beam

    Antibody CD133 Biofunctionalization of Ammonium Acryloyldimethyltaurate and Vinylpyrrolidone Co-Polymer-Based Coating of the Vascular Implants

    No full text
    Current vascular stents, such as drug eluting stents (DES), have some serious drawbacks, like in stent restenosis and thrombosis. Therefore, other solutions are sought to overcome these post-implantations complications. These include the strategy of biofunctionalization of the stent surface with antibodies that facilitate adhesion of endothelial cells (ECs) or endothelial progenitor cells (EPCs). Rapid re-endothelialization of the surface minimizes the risk of possible complications. In this study, we proposed ammonium acryloyldimethyltaurate/vinylpyrrolidone co-polymer-based surface (AVC), which was mercaptosilanized in order to expose free thiol groups. The presence of free thiol groups allowed for the covalent attachment of CD133 antibodies by disulfide bridges formation between mercaptosilanized surface and cysteine of the protein molecule thiol groups. Various examinations were performed in order to validate the procedure, including attenuated total reflection–Fourier transform infrared spectroscopy (ATR-FTIR) and Fourier transform Raman spectroscopy (FT-Raman), atomic force microscopy (AFM) and scanning electron microscopy (SEM). By means of ATR-FTIR spectroscopy presence of the CD133 antibody within coating was confirmed. In vitro studies proved good biocompatibility for blood cells without induction of hemolytic response. Thus, proposed biofunctionalized CD133 antibody AVC surface has shown sufficient stability for adapting as cardiovascular implant coating and biocompatibility. According to conducted in vitro studies, the modified surface can be further tested for applications in various biological systems

    Impact of Liposomal Drug Formulations on the RBCs Shape, Transmembrane Potential, and Mechanical Properties

    No full text
    Liposomal technologies are used in order to improve the effectiveness of current therapies or to reduce their negative side effects. However, the liposome–erythrocyte interaction during the intravenous administration of liposomal drug formulations may result in changes within the red blood cells (RBCs). In this study, it was shown that phosphatidylcholine-composed liposomal formulations of Photolon, used as a drug model, significantly influences the transmembrane potential, stiffness, as well as the shape of RBCs. These changes caused decreasing the number of stomatocytes and irregular shapes proportion within the cells exposed to liposomes. Thus, the reduction of anisocytosis was observed. Therefore, some nanodrugs in phosphatidylcholine liposomal formulation may have a beneficial effect on the survival time of erythrocytes

    Photoactive Pore Matrix for In Situ Delivery of a Photosensitizer in Vascular Smooth Muscle Cells Selective PDT

    No full text
    In this study we present the porous silica-based material that can be used for in situ drug delivery, offering effective supply of active compounds regardless its water solubility. To demonstrate usability of this new material, three silica-based materials with different pore size distribution as a matrix for doping with Photolon (Ph) and Protoporphyrin IX (PPIX) photosensitizers, were prepared. These matrices can be used for coating cardiovascular stents used for treatment of the coronary artery disease and enable intravascular photodynamic therapy (PDT), which can modulate the vascular response to injury caused by stent implantation—procedure that should be thought as an alternative for drug eluting stent. The FTIR spectroscopic analysis confirmed that all studied matrices have been successfully functionalized with the target photosensitizers. Atomic force microscopy revealed that resulting photoactive matrices were very smooth, which can limit the implantation damage and reduce the risk of restenosis. No viability loss of human peripheral blood lymphocytes and no erythrocyte hemolysis upon prolonged incubations on matrices indicated good biocompatibility of designed materials. The suitability of photoactive surfaces for PDT was tested in two cell lines relevant to stent implantation: vascular endothelial cells (HUVECs) and vascular smooth muscle cells (VSMC). It was demonstrated that 2 h incubation on the silica matrices was sufficient for uptake of the encapsulated photosensitizers. Moreover, the amount of the absorbed photosensitizer was sufficient for induction of a phototoxic reaction as shown by a rise of the reactive oxygen species in photosensitized VSMC. On the other hand, limited reactive oxygen species (ROS) induction in HUVECs in our experimental set up suggests that the proposed method of PDT may be less harmful for the endothelial cells and may decrease a risk of the restenosis. Presented data clearly demonstrate that porous silica-based matrices are capable of in situ delivery of photosensitizer for PDT of VSMC

    Photoactive Liposomal Formulation of PVP-Conjugated Chlorin e6 for Photodynamic Reduction of Atherosclerotic Plaque

    No full text
    Background: Liposomes serve as delivery systems for biologically active compounds. Existing technologies inefficiently encapsulate large hydrophilic macromolecules, such as PVP-conjugated chlorin e6 (Photolon). This photoactive drug has been widely tested for therapeutic applications, including photodynamic reduction of atherosclerotic plaque. Methods: A novel formulation of Photolon was produced using “gel hydration technology”. Its pharmacokinetics was tested in Sus scrofa f. domestica. Its cellular uptake, cytotoxicity, and ability to induce a phototoxic reaction were demonstrated in J774A.1, RAW264.7 macrophages, and vascular smooth muscle (T/G HA-VSMC) as well as in vascular endothelial (HUVEC) cells. Results: Developed liposomes had an average diameter of 124.7 ± 0.6 nm (polydispersity index (PDI) = 0.055) and contained >80% of Photolon). The half-life of formulation in S. scrofa was 20 min with area under the curve (AUC) equal to 14.7. The formulation was noncytotoxic in vitro and was rapidly (10 min) and efficiently accumulated by macrophages, but not T/G HA-VSMC or HUVEC. The accumulated quantity of photosensitizer was sufficient for induction of phototoxicity in J774A.1, but not in T/G HA-VSMC. Conclusions: Due to the excellent physical and pharmacokinetic properties and selectivity for macrophages, the novel liposomal formulation of Photolon is a promising therapeutic candidate for use in arteriosclerosis treatment when targeting macrophages but not accompanying vascular tissue is critical for effective and safe therapy
    corecore