10 research outputs found

    Divergent contribution of the MVA and MEP pathways to the formation of polyprenols and dolichols in Arabidopsis

    Get PDF
    Isoprenoids, including dolichols (Dols) and polyprenols (Prens), are ubiquitous components of eukaryotic cells. In plant cells, there are two pathways that produce precursors utilized for isoprenoid biosynthesis: the mevalonate (MVA) pathway and the methylerythritol phosphate (MEP) pathway. In this work, the contribution of these two pathways to the biosynthesis of Prens and Dols was addressed using an in planta experimental model. Treatment of plants with pathway-specific inhibitors and analysis of the effects of various light conditions indicated distinct biosynthetic origin of Prens and Dols. Feeding with deuteriated, pathway-specific precursors revealed that Dols, present in leaves and roots, were derived from both MEP and MVA pathways and their relative contributions were modulated in response to precursor availability. In contrast, Prens, present in leaves, were almost exclusively synthesized via the MEP pathway. Furthermore, results obtained using a newly introduced here ‘competitive’ labeling method, designed so as to neutralize the imbalance of metabolic flow resulting from feeding with a single pathway-specific precursor, suggest that under these experimental conditions one fraction of Prens and Dols is synthesized solely from endogenous precursors (deoxyxylulose or mevalonate), while the other fraction is synthesized concomitantly from endogenous and exogenous precursors. Additionally, this report describes a novel methodology for quantitative separation of 2H and 13C distributions observed for isotopologues of metabolically labeled isoprenoids. Collectively, these in planta results show that Dol biosynthesis, which uses both pathways, is significantly modulated depending on pathway productivity, while Prens are consistently derived from the MEP pathway

    LTR Retrotransposons in Fungi

    Get PDF
    Transposable elements with long terminal direct repeats (LTR TEs) are one of the best studied groups of mobile elements. They are ubiquitous elements present in almost all eukaryotic genomes. Their number and state of conservation can be a highlight of genome dynamics. We searched all published fungal genomes for LTR-containing retrotransposons, including both complete, functional elements and remnant copies. We identified a total of over 66,000 elements, all of which belong to the Ty1/Copia or Ty3/Gypsy superfamilies. Most of the detected Gypsy elements represent Chromoviridae, i.e. they carry a chromodomain in the pol ORF. We analyzed our data from a genome-ecology perspective, looking at the abundance of various types of LTR TEs in individual genomes and at the highest-copy element from each genome. The TE content is very variable among the analyzed genomes. Some genomes are very scarce in LTR TEs (<50 elements), others demonstrate huge expansions (>8000 elements). The data shows that transposon expansions in fungi usually involve an increase both in the copy number of individual elements and in the number of element types. The majority of the highest-copy TEs from all genomes are Ty3/Gypsy transposons. Phylogenetic analysis of these elements suggests that TE expansions have appeared independently of each other, in distant genomes and at different taxonomical levels. We also analyzed the evolutionary relationships between protein domains encoded by the transposon pol ORF and we found that the protease is the fastest evolving domain whereas reverse transcriptase and RNase H evolve much slower and in correlation with each other

    Cell-to-Cell Communication Circuits

    Get PDF
    One of the goals in the field of synthetic biology is the construction of cellular computation devices that could function in a manner similar to electronic circuits. To this end, attempts are made to create biological systems that function as logic gates. In this work we present a theoretical quantitative analysis of a synthetic cellular logic-gates system, which has been implemented in cells of the yeast Saccharomyces cerevisiae (Regot et al., 2011). It exploits endogenous MAP kinase signaling pathways. The novelty of the system lies in the compartmentalization of the circuit where all basic logic gates are implemented in independent single cells that can then be cultured together to perform complex logic functions. We have constructed kinetic models of the multicellular IDENTITY, NOT, OR, and IMPLIES logic gates, using both deterministic and stochastic frameworks. All necessary model parameters are taken from literature or estimated based on published kinetic data, in such a way that the resulting models correctly capture important dynamic features of the included mitogen-activated protein kinase pathways. We analyze the models in terms of parameter sensitivity and we discuss possible ways of optimizing the system, e.g., by tuning the culture density. We apply a stochastic modeling approach, which simulates the behavior of whole populations of cells and allows us to investigate the noise generated in the system; we find that the gene expression units are the major sources of noise. Finally, the model is used for the design of system modifications: we show how the current system could be transformed to operate on three discrete values.Peer Reviewe

    Funkcje białek Rab w roślinach – na poziomie komórki i organizmu

    Get PDF
    Białka Rab są niezbędne w procesach fuzji i pączkowania błon i w związku z tym są kluczowe dla regulacji transportu wewnątrzkomórkowego w komórkach eukariotycznych. Białka Rab mają też wpływ na wiele innych aspektów funkcjonowania komórek, takich jak rearanżacje cytoszkieletu, wyznaczenie polarności komórki czy przekazywanie sygnałów. Białka Rab oddziałują tu zarówno pośrednio, poprzez swój wpływ na dostarczanie odpowiednich białek i polisacharydów do ich miejsc docelowych w komórce, jak i bezpośrednio, poprzez białka efektorowe. Konsekwencje zaburzeń w funkcjonowaniu białek Rab można obserwować na wszystkich poziomach działania organizmu - od komórek przez tkanki i organy aż po cały organizm. U roślin procesy zależne od białek Rab są istotne dla architektury komórki, jej różnicowania, reakcji na stres biotyczny i abiotyczny, a także dla wydajności produkcji rolniczej

    Global pentapeptide statistics are far away from expected distributions

    Get PDF
    Abstract The relationships between polypeptide composition, sequence, structure and function have been puzzling biologists ever since first protein sequences were determined. Here, we study the statistics of occurrence of all possible pentapeptide sequences in known proteins. To compensate for the non-uniform distribution of individual amino acid residues in protein sequences, we investigate separately all possible permutations of every given amino acid composition. For the majority of permutation groups we find that pentapeptide occurrences deviate strongly from the expected binomial distributions, and that the observed distributions are also characterized by high numbers of outlier sequences. An analysis of identified outliers shows they often contain known motifs and rare amino acids, suggesting that they represent important functional elements. We further compare the pentapeptide composition of regions known to correspond to protein domains with that of non-domain regions. We find that a substantial number of pentapeptides is clearly strongly favored in protein domains. Finally, we show that over-represented pentapeptides are significantly related to known functional motifs and to predicted ancient structural peptides

    The Saccharomyces cerevisiae protein Ccz1p interacts with components of the endosomal fusion machinery

    No full text
    Kucharczyk R, Hoffman-Sommer M, Piekarska I, Fischer von Mollard G, Rytka J. The Saccharomyces cerevisiae protein Ccz1p interacts with components of the endosomal fusion machinery. FEMS YEAST RESEARCH. 2009;9(4):565-573.The yeast protein Ccz1p is necessary for vacuolar protein trafficking and biogenesis. In a complex with Mon1p, it mediates fusion of transport intermediates with the vacuole membrane by activating the small GTPase Ypt7p. Additionally, genetic data suggest a role of Ccz1p in earlier transport steps, in the Golgi. In a search for further proteins interacting with Ccz1p, we identified the endosomal soluble N-ethylmaleimide-sensitive factor attachment protein receptor Pep12p as an interaction partner of Ccz1p. Combining the ccz1 Delta mutation with deletions of PEP12 or other genes encoding components of the endosomal fusion machinery, VPS21, VPS9 or VPS45, results in synthetic growth phenotypes. The genes MON1 and YPT7 also interact genetically with PEP12. These results suggest that the Ccz1p-Mon1p-Ypt7p complex is involved in fusion of transport vesicles to multiple target membranes in yeast cells

    Impact of C-terminal truncations in the Arabidopsis Rab escort protein (REP) on REP–Rab interaction and plant fertility

    Get PDF
    Lipid anchors are common post-translational modifications for proteins engaged in signaling and vesicular transport in eukaryotic cells. Rab proteins are geranylgeranylated at their C-termini, a modification which is important for their stable binding to lipid bilayers. The Rab escort protein (REP) is an accessory protein of the Rab geranylgeranyl transferase (RGT) complex and it is obligatory for Rab prenylation. While REP–Rab interactions have been studied by biochemical, structural, and genetic methods in animals and yeast, data on the plant RGT complex are still limited. Here we use hydrogen–deuterium exchange mass spectrometry (HDX-MS) to describe the structural basis of plant REP–Rab binding. The obtained results show that the interaction of REP with Rabs is highly dynamic and involves specific structural changes in both partners. In some cases the Rab and REP regions involved in the interaction are molecule-specific, and in other cases they are common for a subset of Rabs. In particular, the C-terminus of REP is not involved in binding of unprenylated Rab proteins in plants, in contrast to mammalian REP. In line with this, a C-terminal REP truncation does not have pronounced phenotypic effects in planta. On the contrary, a complete lack of functional REP leads to male sterility in Arabidopsis: pollen grains develop in the anthers, but they do not germinate efficiently and hence are unable to transmit the mutated allele. The presented data show that the mechanism of action of REP in the process of Rab geranylgeranylation is different in plants than in animals or yeast

    Six Recommendations for Implementation of FAIR Practice

    Get PDF
    This report analyses the state of FAIR practices within diverse research communities and FAIR-related policies in different countries and offers six practical recommendations on how FAIR can be turned into practice. These recommendations are aimed primarily at decision making entities of the European Open Science Cloud (EOSC), as well as research funders: 1. Fund awareness-raising, training, education and community-specific support. 2. Fund development, adoption and maintenance of community standards, tools and infrastructure. 3. Incentivise development of community governance. 4. Translate FAIR guidelines for other digital objects. 5. Reward and recognise improvements of FAIR practice. 6. Develop and monitor adequate policies for FAIR data and research objects. In order to ensure widespread benefits of the EOSC, improvements in FAIR practices are necessary. We believe that the timing of this report, which coincides with the fully-fledged launch of the EOSC, could help the EOSC, research funders and policymakers make crucial strategic decisions about investment needed to put FAIR principles into practice.nonPeerReviewe
    corecore