12 research outputs found

    A case of Asperger syndrome diagnosed in adult age

    No full text
    Patient aged 34 was referred to the Department of Adult Psychiatry, Poznañ University of Medical Sciences, for observation of his psychiatric condition. At the age of 6 he was hospitalized with diagnosis of reactive depression. For many years he has been treated as outpatient with different diagnoses – initially infant schizophrenia was suspected, later the neurotic disorders, connected with microorganic changes, as well as neurotical personality development and difficulties in adaptation to peer group and to school requirements as well as disharmonic intellectual development. When the patient was hospitalized in the ward it was observed: inappropriate development of social interactions, difficulties in understanding and using interaction, rules with other people as well as inappropriate verbal and nonverbal aspects of communication, with expression, irrelevant to the social situation. Ritual actions, backward movements and limited interests were also noticed. The patient was diagnosed with Asperger syndrome. Thanks to that he obtained status of the disabled person and was able to get an appropriate job.Pacjent, lat 34, został skierowany do Kliniki Psychiatrii Dorosłych Akademii Medycznej w Poznaniu w celu obserwacji stanu psychicznego. W wieku 6 lat był hospitalizowany z rozpoznaniem depresji reaktywnej. Przez wiele lat był leczony w Poradni Zdrowia Psychicznego, gdzie wysuwano podejrzenie schizofrenii dziecięcej, potem rozpoznano zaburzenia nerwicowe na podłożu zmian mikroorganicznych, następnie neurotyczny rozwój osobowości i związane z tym trudności adaptacyjne zarówno do grupy rówieśniczej, jak i do wymogów szkolnych oraz dysharmonijny rozwój intelektu. Podczas obserwacji na oddziale stwierdzono upośledzenie socjalizacji – nieprawidłowy rozwój interakcji społecznych, trudności w zrozumieniu i stosowaniu reguł interakcji z innymi ludźmi, a także nieprawidłowości w zakresie komunikacji werbalnej i niewerbalnej, wypowiedzi niedostosowane do sytuacji społecznej. Zaobserwowano także wykonywanie czynności rytualnych, jak również upośledzenie sprawności ruchowej i zawężenie zainteresowań. Rozpoznano zespół Aspergera, dzięki czemu pacjent mógł otrzymać status osoby niepełnosprawnej i podjąć odpowiednią pracę

    Structural Studies of Glutamate Dehydrogenase (Isoform 1) From Arabidopsis thaliana, an Important Enzyme at the Branch-Point Between Carbon and Nitrogen Metabolism

    No full text
    Glutamate dehydrogenase (GDH) releases ammonia in a reversible NAD(P)+-dependent oxidative deamination of glutamate that yields 2-oxoglutarate (2OG). In current perception, GDH contributes to Glu homeostasis and plays a significant role at the junction of carbon and nitrogen assimilation pathways. GDHs are members of a superfamily of ELFV (Glu/Leu/Phe/Val) amino acid dehydrogenases and are subdivided into three subclasses, based on coenzyme specificity: NAD+-specific, NAD+/NADP+ dual-specific, and NADP+-specific. We determined in this work that the mitochondrial AtGDH1 isozyme from A. thaliana is NAD+-specific. Altogether, A. thaliana expresses three GDH isozymes (AtGDH1-3) targeted to mitochondria, of which AtGDH2 has an extra EF-hand motif and is stimulated by calcium. Our enzymatic assays of AtGDH1 established that its sensitivity to calcium is negligible. In vivo the AtGDH1-3 enzymes form homo- and heterohexamers of varied composition. We solved the crystal structure of recombinant AtGDH1 in the apo-form and in complex with NAD+ at 2.59 and 2.03 Å resolution, respectively. We demonstrate also that both in the apo form and in 1:1 complex with NAD+, it forms D3-symmetric homohexamers. A subunit of AtGDH1 consists of domain I, which is involved in hexamer formation and substrate binding, and of domain II which binds coenzyme. Most of the subunits in our crystal structures, including those in NAD+ complex, are in open conformation, with domain II forming a large (albeit variable) angle with domain I. One of the subunits of the AtGDH1-NAD+ hexamer contains a serendipitous 2OG molecule in the active site, causing a dramatic (∼25°) closure of the domains. We provide convincing evidence that the N-terminal peptide preceding domain I is a mitochondrial targeting signal, with a predicted cleavage site for mitochondrial processing peptidase (MPP) at Leu17-Leu18 that is followed by an unexpected potassium coordination site (Ser27, Ile30). We also identified several MPD [(+/-)-2-methyl-2,4-pentanediol] binding sites with conserved sequence. Although AtGDH1 is insensitive to MPD in our assays, the observation of druggable sites opens a potential for non-competitive herbicide design

    Serendipitous crystallization of E. coli HPII catalase, a sequel to “the tale usually not told”

    No full text
    Protein crystallographers are well aware of the trap of crystallizing E. coli proteins instead of the macromolecule of interest if heterologous recombinant protein expression in E. coli was part of the experimental pipeline. Among the well-known culprits are YodA metal-binding lipocalin (25 kDa) and YadF carbonic anhydrase (a tetramer of 25 kDa subunits). We report a novel crystal form of another such culprit, E. coli HPII catalase, which is a tetrameric protein of ~340 kDa molecular weight. HPII is likely to contaminate recombinant protein samples, co-purify, and then co-crystallize with the target proteins, especially if their masses in size exclusion chromatography are ~300-400 kDa. What makes this case more interesting but also parlous, is the fact that HPII can crystallize from very low concentrations, even well below 1 mg/mL

    New aspects of DNA recognition by group II WRKY transcription factor revealed by structural and functional study of AtWRKY18 DNA binding domain

    No full text
    WRKY transcription factors (TFs) constitute one of the largest families of plant TFs. Based on the organization of domains and motifs, WRKY TFs are divided into three Groups (I-III). The WRKY subgroup IIa includes three representatives in A. thaliana, AtWRKY18, AtWRKY40, and AtWRKY60, that participate in biotic and abiotic stress responses. Here we present crystal structures of the DNA binding domain (DBD) of AtWRKY18 alone and in the complex with a DNA duplex containing the WRKY-recognition sequence, W-box. Subgroup IIa WRKY TFs are known to form homo and heterodimers. Our data suggest that the dimerization interface of the full-length AtWRKY18 involves contacts between the DBD subunits. DNA binding experiments and structural analysis point out novel aspects of DNA recognition by WRKY TFs. In particular, AtWRKY18-DBD preferentially binds an overlapping tandem of W-boxes accompanied by a quasi-W-box motif. The binding of DNA deforms the B-type double helix, which suggests that the DNA fragment must be prone to form a specific structure. This can explain why despite the short W-box consensus, WRKY TFs can precisely control gene expression. Finally, this first experimental structure of a Group II WRKY TF allowed us to compare Group I-III representatives

    Arabidopsis thaliana serine hydroxymethyltransferases: functions, structures, and perspectives

    No full text
    Serine hydroxymethyltransferase (SHM) is one of the hallmarks of one-carbon metabolism. In plants, isoforms of SHM participate in photorespiration and/or transfer the one-carbon unit from L-serine to tetrahydrofolate (THF), hence producing 5,10-CH2_2-THF that is needed, e.g., for biosynthesis of methionine, thymidylate, and purines. These links highlight the importance of SHM activity in DNA biogenesis, its epigenetic methylations, and in stress responses. Plant genomes encode several SHM isoforms that localize to cytosol, mitochondria, plastids, and nucleus. In this work, we present a thorough functional and structural characterization of all seven SHM isoforms from Arabidopsis thaliana (AtSHM1-7). In particular, we analyzed tissue-specific expression profiles of the AtSHM genes. We also compared catalytic properties of the active AtSHM1-4 in terms of catalytic efficiency in both directions and inhibition by the THF substrate. Despite numerous attempts to rescue the SHM activity of AtSHM5-7, we failed, which points towards different physiological functions of these isoforms. Comparative analysis of experimental and predicted three-dimensional structures of AtSHM1-7 proteins indicated differences in regions that surround the entrance to the active site cavity

    Does the presence of ground state complex between a PR-10 protein and a sensitizer affect the mechanism of sensitized photo-oxidation?

    No full text
    The mechanisms of one-electron protein oxidation are complicated and still not well-understood. In this work, we investigated the reaction of sensitized photo-oxidation using carboxybenzophenone (CB) as a sensitizer and a PR-10 protein (MtN13) as a quencher, which is intrinsically complicated due to the complex structure of the protein and multiple possibilities of CB attack.To predict and examine the possible reactions precisely, the 3D structure of the MtN13 protein was taken into account. Our crystallographic studies revealed a specific binding of the CB molecule in the protein's hydrophobic cavity, while mass spectrometry identified the amino acid residues (Met, Tyr, Asp and Phe) creating adducts with the sensitizer, thus indicating the sites of 3CB* quenching. In addition, protein aggregation was also observed.The detailed mechanisms of CB quenching by the MtN13 molecule were elucidated by an analysis of transient products by means of time-resolved spectroscopy. The investigation of the transient and stable products formed during the protein photo-oxidation was based on the data obtained from HPLC-MS analysis of model compounds, single amino acids and dipeptides.Our proposed mechanisms of sensitized protein photo-oxidation emphasize the role of a ground state complex between the protein and the sensitizer and indicate several new and specific products arising as a result of one-electron oxidation. Based on the analysis of the transient and stable products, we have demonstrated the influence of neighboring groups, especially in the case of Tyr oxidation, where the tyrosyl radical can be formed via a direct electron transfer from Tyr to CB* or via an intramolecular electron transfer from Tyr to Met radical cation Met > S●+ or thiyl radical CysS● from neighboring oxidized groups

    Biochemical characterization of L-asparaginase isoforms from Rhizobium etli—the boosting effect of zinc

    Get PDF
    L-Asparaginases, divided into three structural Classes, catalyze the hydrolysis of L-asparagine to L-aspartic acid and ammonia. The members of Class 3, ReAIV and ReAV, encoded in the genome of the nitrogen fixing Rhizobium etli, have the same fold, active site, and quaternary structure, despite low sequence identity. In the present work we examined the biochemical consequences of this difference. ReAIV is almost twice as efficient as ReAV in asparagine hydrolysis at 37°C, with the kinetic KM, kcat parameters (measured in optimal buffering agent) of 1.5 mM, 770 s-1 and 2.1 mM, 603 s-1, respectively. The activity of ReAIV has a temperature optimum at 45°C–55°C, whereas the activity of ReAV, after reaching its optimum at 37°C, decreases dramatically at 45°C. The activity of both isoforms is boosted by 32 or 56%, by low and optimal concentration of zinc, which is bound three times more strongly by ReAIV then by ReAV, as reflected by the KD values of 1.2 and 3.3 μM, respectively. We also demonstrate that perturbation of zinc binding by Lys→Ala point mutagenesis drastically decreases the enzyme activity but also changes the mode of response to zinc. We also examined the impact of different divalent cations on the activity, kinetics, and stability of both isoforms. It appeared that Ni2+, Cu2+, Hg2+, and Cd2+ have the potential to inhibit both isoforms in the following order (from the strongest to weakest inhibitors) Hg2+ > Cu2+ > Cd2+ > Ni2+. ReAIV is more sensitive to Cu2+ and Cd2+, while ReAV is more sensitive to Hg2+ and Ni2+, as revealed by IC50 values, melting scans, and influence on substrate specificity. Low concentration of Cd2+ improves substrate specificity of both isoforms, suggesting its role in substrate recognition. The same observation was made for Hg2+ in the case of ReAIV. The activity of the ReAV isoform is less sensitive to Cl− anions, as reflected by the IC50 value for NaCl, which is eightfold higher for ReAV relative to ReAIV. The uncovered complementary properties of the two isoforms help us better understand the inducibility of the ReAV enzyme
    corecore