5 research outputs found

    Part Two: Extracellular Vesicles as a Risk Factor in Neurodegenerative Diseases

    Get PDF
    Extracellular vesicles (EVs) involved in the intercellular communication hold cell-specific cargos that contain proteins, various species of RNA and lipids. EVs are emerging as powerful tools for diagnosis and therapy in most diseases but little is known about their role in central nervous system (CNS) physiology or disease. Considering the extraordinary intricated cytoarchitecture of the brain, the implication of EVs in its pathophysiology is difficult to establish. Blood circulating EVs derived from local or distant vascular cells or EVs released from brain into the cerebrospinal fluid (CSF) may influence the brain activity. EVs released in the blood stream from various tissues may influence the brain by passing through the blood-brain barrier (BBB) or through choroid plexus. Since the choroid plexus has also a clearance role, it might be possible that EVs carrying brain abnormal proteins to pass into the blood can be detected. Thus, considering that EVs are specialized cargos bearing combined signals between cells, they might be an interesting therapy target in the future for both regulating neurogenesis and abnormal protein clearance. We present here data gathered about EVs that may influence the CNS functionality and be involved in most common neurodegenerative diseases

    Serum and Fecal Markers of Intestinal Inflammation and Intestinal Barrier Permeability Are Elevated in Parkinson’s Disease

    Get PDF
    Parkinson’s disease (PD) is characterized by alpha-synuclein misfolding with subsequent intraneuronal amyloid formation and accumulation, low grade neuroinflammatory changes, and selective neurodegeneration. Available evidence suggests that the pathology usually begins in the gut and olfactory mucosa, spreading to the brain via the vagus and olfactory nerves, by a prion-like mechanism. A causal relationship has not been established, but gut dysbiosis is prevalent in PD and may lead to intestinal inflammation and barrier dysfunction. Additionally, epidemiological data indicate a link between inflammatory bowel diseases and PD. Calprotectin and zonulin are markers of intestinal inflammation and barrier permeability, respectively. We evaluated their serum and fecal levels in 22 patients with sporadic PD and 16 unmatched healthy controls. Mean calprotectin was higher in PD, both in serum (14.26 mcg/ml ± 4.50 vs. 5.94 mcg/ml ± 3.80, p = 0.0125) and stool (164.54 mcg/g ± 54.19 vs. 56.19 mcg/g ± 35.88, p = 0.0048). Mean zonulin was also higher in PD serum (26.69 ng/ml ± 3.55 vs. 19.43 ng/ml ± 2.56, p = 0.0046) and stool (100.19 ng/ml ± 28.25 vs. 37.3 ng/ml ± 13.26, p = 0.0012). Calprotectin was above the upper reference limit in 19 PD serums and 6 controls (OR = 10.56, 95% CI = 2.17–51.42, p = 0.0025) and in 20 PD stool samples and 4 controls (OR = 30, 95% CI = 4.75–189.30, p = 0.000045). Increased zonulin was found only in the stool samples of 8 PD patients. Despite the small sample size, our findings are robust, complementing and supporting other recently published results. The relation between serum and fecal calprotectin and zonulin levels and sporadic PD warrants further investigation in larger cohorts

    Uric Acid, Oxidative Stress and Inflammation in Chronic Heart Failure with Reduced Ejection Fraction

    No full text
    Background. Oxidative stress (OS) and inflammation are major mechanisms involved in the progression of chronic heart failure (CHF). Serum uric acid (sUA) is related to CHF severity and could represent a marker of xanthine-oxidase activation. The relationship between sUA, oxidative stress (OS) and inflammation markers was assessed in patients with moderate-severe CHF and reduced left ventricular (LV) ejection fraction (EF)

    Vaccine mRNA Can Be Detected in Blood at 15 Days Post-Vaccination

    No full text
    COVID-19 mRNA vaccines effectively reduce incidence of severe disease, hospitalisation and death. The biodistribution and pharmacokinetics of the mRNA-containing lipid nanoparticles (LNPs) in these vaccines are unknown in humans. In this study, we used qPCR to track circulating mRNA in blood at different time-points after BNT162b2 vaccination in a small cohort of healthy individuals. We found that vaccine-associated synthetic mRNA persists in systemic circulation for at least 2 weeks. Furthermore, we used transmission electron microscopy (TEM) to investigate SARS-CoV-2 spike protein expression in human leukemic cells and in primary mononuclear blood cells treated in vitro with the BNT162b2 vaccine. TEM revealed morphological changes suggestive of LNP uptake, but only a small fraction of K562 leukemic cells presented spike-like structures at the cell surface, suggesting reduced levels of expression for these specific phenotypes

    Secreted Mutant Calreticulins As Rogue Cytokines in Myeloproliferative Neoplasms

    Get PDF
    Mutant calreticulin (CALR) proteins resulting from a -1/+2 frameshifting mutation of the CALR exon 9 carry a novel C-terminal amino-acid sequence and drive the development of myeloproliferative neoplasms (MPNs). Mutant CALRs were shown to interact with and activate the thrombopoietin receptor (TpoR/MPL) in the same cell. We report that mutant CALR proteins are secreted and can be found in patient plasma at levels up to 160 ng/ml, with a mean of 25.64 ng/ml. Plasma mutant CALR is found in complex with soluble Transferrin Receptor 1 (sTFRC) that acts as a carrier protein and increases CALR mutant half-life. Recombinant mutant CALR proteins bound and activated the TpoR on cell lines and primary megakaryocytic progenitors from CALR-mutated patients where they drive Tpo-independent colony formation. Importantly, the CALR-sTFRC complex remains functional for TpoR activation. By bioluminescence resonance energy transfer assay, we show that mutant CALR proteins produced in one cell can specifically interact in trans with the TpoR on a target cell. Cells that carry both TpoR and mutant CALR are hypersensitive to exogenous CALR mutant proteins in comparison to cells that only carry TpoR, and respond to levels of CALR mutant proteins similar to those in patient plasma. This is consistent with CALR mutated cells exposing at the cell-surface TpoR carrying immature Nlinked sugars. Thus, secreted mutant CALR proteins will act more specifically on the MPN clone. In conclusion, a chaperone, CALR, can turn into a rogue cytokine through somatic mutation of its encoding gen
    corecore