6 research outputs found

    Low frequency pulse stimulation of Schaffer collaterals in Trpm4(-/-) knockout rats differently affects baseline BOLD signals in target regions of the right hippocampus but not BOLD responses at the site of stimulation

    No full text
    Electrical stimulation of right Schaffer collateral in Trpm4-/- knockout and wild type rats were used to study the role of Trpm4 channels for signal processing in the hippocampal formation. Stimulation induced neuronal activity was simultaneously monitored in the CA1 region by in vivo extracellular field recordings and in the entire brain by BOLD fMRI measurements. In wild type and Trpm4-/- knockout rats, consecutive 5 Hz pulse trains elicited similar neuronal responses in the CA1 region and similar BOLD responses in the stimulated right hippocampus. Stimulus-related positive BOLD responses were also found in the left dorsal hippocampus. In contrast to the right dorsal hippocampus, baseline BOLD signals in the left hippocampus significantly decreased during consecutive stimulation trains. Similarly, slowly developing significant declines in baseline BOLD signals, in absence of any positive BOLD responses, were also observed in the right entorhinal, right piriform cortex, right basolateral amygdala and right dorsal striatum whereas baseline BOLD signals remained almost stable in the corresponding left regions. Furthermore, significant declines in baseline BOLD signals were found in the prefrontal cortex and prelimbic/infralimbic cortex. Because significant baseline BOLD declines were only observed in target regions of the right dorsal hippocampus, it might reflect functional connectivity between these regions. In all observed regions the decline in baseline BOLD signals was significantly delayed and less pronounced in Trpm4-/- knockout rats when compared to wild type rats. Thus, either Trpm4 channels are involved in mediating these baseline BOLD shifts or functional connectivity of the hippocampus is impaired in Trpm4-/- knockout rats.status: publishe

    Dextran as a Resorbable Coating Material for Flexible Neural Probes

    No full text
    In the quest for chronically reliable and bio-tolerable brain interfaces there has been a steady evolution towards the use of highly flexible, polymer-based electrode arrays. The reduced mechanical mismatch between implant and brain tissue has shown to reduce the evoked immune response, which in turn has a positive effect on signal stability and noise. Unfortunately, the low stiffness of the implants also has practical repercussions, making surgical insertion extremely difficult. In this work we explore the use of dextran as a coating material that temporarily stiffens the implant, preventing buckling during insertion. The mechanical properties of dextran coated neural probes are characterized, as well as the different parameters which influence the dissolution rate. Tuning parameters, such as coating thickness and molecular weight of the used dextran, allows customization of the stiffness and dissolution time to precisely match the user's needs. Finally, the immunological response to the coated electrodes was analyzed by performing a histological examination after four months of in vivo testing. The results indicated that a very limited amount of glial scar tissue was formed. Neurons have also infiltrated the area that was initially occupied by the dissolving dextran coating. There was no noticeable drop in neuron density around the site of implantation, confirming the suitability of the coating as a temporary aid during implantation of highly flexible polymer-based neural probes.status: publishe

    Dextran as a Resorbable Coating Material for Flexible Neural Probes

    No full text
    In the quest for chronically reliable and bio-tolerable brain interfaces there has been a steady evolution towards the use of highly flexible, polymer-based electrode arrays. The reduced mechanical mismatch between implant and brain tissue has shown to reduce the evoked immune response, which in turn has a positive effect on signal stability and noise. Unfortunately, the low stiffness of the implants also has practical repercussions, making surgical insertion extremely difficult. In this work we explore the use of dextran as a coating material that temporarily stiffens the implant, preventing buckling during insertion. The mechanical properties of dextran coated neural probes are characterized, as well as the different parameters which influence the dissolution rate. Tuning parameters, such as coating thickness and molecular weight of the used dextran, allows customization of the stiffness and dissolution time to precisely match the user’s needs. Finally, the immunological response to the coated electrodes was analyzed by performing a histological examination after four months of in vivo testing. The results indicated that a very limited amount of glial scar tissue was formed. Neurons have also infiltrated the area that was initially occupied by the dissolving dextran coating. There was no noticeable drop in neuron density around the site of implantation, confirming the suitability of the coating as a temporary aid during implantation of highly flexible polymer-based neural probes

    Disentangling the role of TRPM4 in hippocampus-dependent plasticity and learning: an electrophysiological, behavioral and FMRI approach

    No full text
    Hippocampal long-term potentiation (LTP) has been extensively studied as a cellular model of learning and memory. Recently, we described a central function of the Transient Receptor Potential M4 (TRPM4) channel in hippocampal LTP in mice in vitro. Here, we used Trpm4 knock-out (Trpm4-/-) rats to scrutinize TRPM4's role in the intact brain in vivo. After having confirmed the previous in vitro findings in mice, we studied hippocampal synaptic plasticity by chronic recordings in freely moving rats, hippocampus-dependent learning by a behavioral battery and hippocampal-cortical connectivity by fMRI. The electrophysiological investigation supports an involvement of TRPM4 in LTP depending on the induction protocol. Moreover, an exhaustive analysis of the LTP kinetics point to mechanistic changes in LTP by trpm4 deletion. General behavior as measured by open field test, light-dark box and elevated plus maze was inconspicuous in Trpm4-/- rats. However, they showed a distinct deficit in spatial working and reference memory associated to the Barnes maze and T-maze test, respectively. In contrast, performance of the Trpm4-/- in the Morris water maze was unaltered. Finally, fMRI investigation of the effects of a strong LTP induction manifested BOLD responses in the ipsilateral and contralateral hippocampus and the prefrontal cortex of both groups. Yet, the initial BOLD response in the stimulated hippocampal area of Trpm4-/- was significantly enhanced compared to WT rats. Our findings at the cellular, behavioral and system level point to a relevant role for TRPM4 in specific types of hippocampal synaptic plasticity and learning but not in hippocampal-prefrontal interaction.status: publishe
    corecore