18 research outputs found

    C-peptide: a predictor of cardiovascular mortality in subjects with established atherosclerotic disease

    Get PDF
    Aim: Insulin resistance and type 2 diabetes are independent risk factors for cardiovascular diseases. Levels of C-peptide are increased in these patients and its role in the atherosclerosis progression was studied in vitro and in vivo over the past years. To evaluate the possible use of C-peptide as cardiovascular biomarkers, we designed an observational study in which we enrolled patients with mono- or poly-vascular atherosclerotic disease. Methods: We recruited 431 patients with stable atherosclerosis and performed a yearly follow-up to estimate the cardiovascular and total mortality and cardiovascular events. Results: We performed a mean follow-up of 56months on 268 patients. A multivariate Cox analysis showed that C-peptide significantly increased the risk of cardiovascular mortality [Hazard Ratio: 1.29 (95% confidence interval: 1.02-1.65, p<0.03513)] after adjustment for age, sex, diabetes treatment, estimated glomerular filtration rate and known diabetes status. Furthermore, levels of C-peptide were significantly correlated with metabolic parameters and atherogenic factors. Conclusion: C-peptide was associated with cardiovascular mortality independently of known diabetes status in a cohort of patients with chronic atherosclerotic disease. Future studies using C-peptide into a reclassification approach might be undertaken to consider its potential as a cardiovascular disease biomarker

    IL-6 Levels Influence 3-Month All-Cause Mortality in Frail Hospitalized Older Patients

    Get PDF
    The multidimensional prognostic index (MPI) is a sensitive and specific prognosis estimation tool that accurately predicts all-cause mortality in frail older patients. It has been validated to assess the risk of 1-month to 2-year mortality in frail older patients during hospitalization and after hospital discharge. However, whether the MPI is a valid prognostic tool for follow-up periods of different lengths remains to be validated. To this end, we followed up 80 hospitalized patients (female=37, male 43) at least 75 years of age (mean age=82.6±4.4, range=75-94 years) to assess the 3-month all-cause mortality (mean follow-up=61.0 ± 31.7 months [range 4-90 days]). Accordingly, patients were subdivided into low (MPI-1, score 0-0.33), moderate (MPI-2, score 0.34-0.66) and high (MPI-3, score 0.67-1) mortality risk classes. Moreover, baseline biochemical, inflammatory and metabolic parameters, as well as anamnestic and clinical characteristics, were obtained. Although the MPI-3 score was significantly associated with 3-month all-cause mortality in univariate analysis (HR=5.79, 95%CI=1.77-18.92, p=0.004), a multivariate model indicated that only low albumin (HR=0.33, 95%CI=0.16-0.68, p=0.003) and high IL6 (HR=1.01, 95%CI=1.00-1.02, p=0.010) levels were significantly associated with 3-month all-cause mortality. In conclusion, we suggest that measurement of IL6 as well as albumin, rather than the MPI score, may help in providing tailored therapeutic interventions to decrease short term mortality in older hospitalized individuals

    Alterations in Rev-ERBα/BMAL1 ratio and glycated hemoglobin in rotating shift workers: the EuRhythDia study

    Get PDF
    Objective: To detect premature gluco-metabolic defects among night shift workers with disturbances in circadian rhythms. Design and methods: We performed a hypothesis-generating, cross-sectional analysis of anthropometric, metabolic, lipid, and inflammation parameters, comparing active (a-NSW, n = 111) and former (f-NSW, n = 98) rotating night shift workers with diurnal workers (controls, n = 69). All participants were hospital nurses. We also evaluated the Pittsburgh Sleep Quality Index (PSQI) and assessed expression of transcription factors REV-ERBα and BMAL1 in peripheral blood mononuclear cells (PBMCs), as indicators of the molecular clock. Results: Both a-NSW and f-NSW participants had significantly higher glycated hemoglobin (HbA1c) and white blood cell counts (WBC) (p &lt; 0.001 for both), PSQI global score (p = 0.001) and diastolic blood pressure levels (p = 0.024) compared with controls. Expression of REV-ERBα/BMAL1 RNA in PBMC was significantly higher in a-NSW (p = 0.05) than in f-NSW or control participants. Multivariate regression analysis showed that working status and PSQI were independent determinants of higher HbA1c levels (p &lt; 0.001). Conclusions: We demonstrated that young, healthy night shift workers show subclinical abnormalities in HbA1c and changes in peripheral clock gene expression

    Enterocyte superoxide dismutase 2 deletion drives obesity

    Get PDF
    Compelling evidence support an involvement of oxidative stress and intestinal inflammation as early events in the predisposition and development of obesity and its related comorbidities. Here, we show that deficiency of the major mitochondrial antioxidant enzyme superoxide dismutase 2 (SOD2) in the gastrointestinal tract drives spontaneous obesity. Intestinal epithelium-specific Sod2 ablation in mice induced adiposity and inflammation via phospholipase A2 (PLA2) activation and increased release of omega-6 polyunsaturated fatty acid arachidonic acid. Remarkably, this obese phenotype was rescued when fed an essential fatty acid-deficient diet, which abrogates de novo biosynthesis of arachidonic acid. Data from clinical samples revealed that the negative correlation between intestinal Sod2 mRNA levels and obesity features appears to be conserved between mice and humans. Collectively, our findings suggest a role of intestinal Sod2 levels, PLA2 activity, and arachidonic acid in obesity presenting new potential targets of therapeutic interest in the context of this metabolic disorder

    DPP9 as a Potential Novel Mediator in Gastrointestinal Virus Infection

    Get PDF
    Dipeptidyl peptidase 9 (DPP9) is a member of the dipeptidyl peptidase IV family. Inhibition of DPP9 has recently been shown to activate the nucleotide-binding domain leucine-rich repeat 1 (NLRP1) inflammasome. NLRP1 is known to bind nucleic acids with high affinity and directly interact with double stranded RNA, which plays a key role in viral replication. DPP9 has also recently emerged as a key gene related to lung-inflammation in critical SARS-CoV-2 infection. Importantly, DPP9 activity is strongly dependent on the oxidative status. Here, we explored the potential role of DPP9 in the gastrointestinal tract. We performed transcriptomics analyses of colon (microarray, n = 37) and jejunal (RNA sequencing, n = 31) biopsies from two independent cohorts as well as plasma metabolomics analyses in two independent cohorts (n = 37 and n = 795). The expression of DPP9 in the jejunum, colon, and blood was significantly associated with circulating biomarkers of oxidative stress (uric acid, bilirubin). It was also associated positively with the expression of transcription factors (NRF-2) and genes (SOD, CAT, GPX) encoding for antioxidant enzymes, but negatively with that of genes (XDH, NOX) and transcription factors (NF-KB) involved in ROS-generating enzymes. Gene co-expression patterns associated with DPP9 identified several genes participating in antiviral pathways in both tissues. Notably, DPP9 expression in the colon and plasma was strongly positively associated with several circulating nucleotide catabolites (hypoxanthine, uric acid, 3-ureidopropionic acid) with important roles in the generation of ROS and viral infection, as well as other metabolites related to oxidative stress (Resolvin D1, glutamate-containing dipeptides). Gene-drug enrichment analyses identified artenimol, puromycin, anisomycin, 3-phenyllactic acid, and linezolid as the most promising drugs targeting these DPP9-associated genes. We have identified a novel potential pathogenic mechanism of viral infection in the digestive tract and promising existing drugs that can be repositioned against viral infection.This work was partially supported by Fundació Marató de TV3 research grant number 201612-31 and by Instituto de Salud Carlos III (ISCIII, Madrid, Spain) through the project PI20/01090 (co-funded by the European Union under the European Regional Development Fund (FEDER). “A way to make Europe”) to J.M.-P. Á.d.C.-I. is funded by Girona Biomedical Research Institute (Girona, Spain) through the Horizon 2020 Framework Programme of the European Union under the Marie Skłodowska-Curie Innovative Training Network grant agreement No 859890. M.A.-R. is funded by Instituto de Salud Carlos III (Madrid, Spain) through a predoctoral Río Hortega contract CM19/00190 (co-funded by European Regional Development Fund “Investing in your future”). J.M.-P. is funded by Instituto de Salud Carlos III (Madrid, Spain) through the Miguel Servet Program CP18/00009 (co-funded by European Regional Development Fund “Investing in your future”)

    Antibiotic-induced gut microbiota depletion exacerbates host hypercholesterolemia

    No full text
    Hypercholesterolemia is a major driver of atherosclerosis, thus contributing to high morbidity and mortality worldwide. Gut microbiota have been identified as modulator of blood lipids including cholesterol levels. Few studies have already linked certain bacteria and microbial mechanisms to host cholesterol. However, in particular mouse models revealed conflicting results depending on genetics and experimental protocol. To gain further insights into the relationship between intestinal bacteria and host cholesterol metabolism, we first per-formed fecal 16S rRNA targeted metagenomic sequencing in a human cohort (n = 24) naive for cholesterol lowering drugs. Here, we show alterations in the gut microbiota composition of hypercholesterolemic patients with depletion of Bifidobacteria, expansion of Clostridia and increased Firmicutes/Bacteroidetes ratio. To test whether pharmacological intervention in gut microbiota impacts host serum levels of cholesterol, we treated hypercholesterolemic Apolipoprotein E knockout with oral largely non-absorbable antibiotics. Antibiotics increased serum cholesterol, but only when mice were fed normal chow diet and cholesterol was measured in the random fed state. These elevations in cholesterol already occurred few days after treatment initiation and were reversible after stopping antibiotics with re-acquisition of intestinal bacteria. Gene expression analyses pointed to increased intestinal cholesterol uptake mediated by antibiotics in the fed state. Non-targeted serum metab-olomics suggested that diminished plant sterol levels and reduced bile acid cycling were involved microbial mechanisms. In conclusion, our work further enlightens the link between gut microbiota and host cholesterol metabolism. Pharmacological disruption of the gut flora by antibiotics was able to exacerbate serum cholesterol and may impact cardiovascular disease

    Lipidomics and metabolomics signatures of SARS-CoV-2 mediators/receptors in peripheral leukocytes, jejunum and colon

    Get PDF
    Coronavirus SARS-CoV-2; COVID-19; 2019-nCoV; Lipidómicas; Metabolómicas; Receptores viralesCoronavirus SARS-CoV-2; COVID-19; 2019-nCoV; Lipidòmiques; Metabolòmiques; Receptors viralsCoronavirus SARS-CoV-2; COVID-19; 2019-nCoV; Lipidomics; Metabolomics; Viral receptorsCell surface receptor-mediated viral entry plays a critical role in this infection. Well-established SARS-CoV-2 receptors such as ACE2 and TMPRSS2 are highly expressed in the gastrointestinal tract. In fact, there are evidences that SARS-CoV-2 infects epithelial cells from the digestive system. However, emerging research has identified novel mediators such as DPP9, TYK2, and CCR2, all playing a critical role in inflammation. We evaluated the expression of SARS-CoV-2 receptors in peripheral leukocytes (n=469), jejunum (n=30), and colon (n=37) of three independent cohorts by real-time PCR, RNA-sequencing, and microarray transcriptomics. We also performed HPCL-MS/MS lipidomics and metabolomics analyses to identify signatures linked to SARS-CoV-2 receptors. We found markedly higher peripheral leukocytes ACE2 expression levels in women compared to men, whereas the intestinal expression of TMPRSS2 was positively associated with BMI. Consistent lipidomics signatures associated with the expression of these mediators were found in both tissues and peripheral leukocytes involving n-3 long-chain PUFAs and arachidonic acid-derived eicosanoids, which play a key role in the regulation of inflammation and may interfere with viral entry and replication. Medium- and long-chain hydroxy acids, which have shown to interfere in viral replication, were also liked to SARS-CoV2 receptors. Gonadal steroids were also associated with the expression of some of these receptors, even after controlling for sex. The expression of SARS-CoV2 receptors was associated with several metabolic and nutritional traits in different cell types. This information may be useful in the design of potential therapies targeted at coronavirus entry

    Lipidomics and metabolomics signatures of SARS-CoV-2 mediators/receptors in peripheral leukocytes, jejunum and colon

    No full text
    Cell surface receptor-mediated viral entry plays a critical role in this infection. Well-established SARS-CoV-2 receptors such as ACE2 and TMPRSS2 are highly expressed in the gastrointestinal tract. In fact, there are evidences that SARS-CoV-2 infects epithelial cells from the digestive system. However, emerging research has identified novel mediators such as DPP9, TYK2, and CCR2, all playing a critical role in inflammation. We evaluated the expression of SARS-CoV-2 receptors in peripheral leukocytes (n=469), jejunum (n=30), and colon (n=37) of three independent cohorts by real-time PCR, RNA-sequencing, and microarray transcriptomics. We also performed HPCL-MS/MS lipidomics and metabolomics analyses to identify signatures linked to SARS-CoV-2 receptors. We found markedly higher peripheral leukocytes ACE2 expression levels in women compared to men, whereas the intestinal expression of TMPRSS2 was positively associated with BMI. Consistent lipidomics signatures associated with the expression of these mediators were found in both tissues and peripheral leukocytes involving n-3 long-chain PUFAs and arachidonic acid-derived eicosanoids, which play a key role in the regulation of inflammation and may interfere with viral entry and replication. Medium- and long-chain hydroxy acids, which have shown to interfere in viral replication, were also liked to SARS-CoV2 receptors. Gonadal steroids were also associated with the expression of some of these receptors, even after controlling for sex. The expression of SARS-CoV2 receptors was associated with several metabolic and nutritional traits in different cell types. This information may be useful in the design of potential therapies targeted at coronavirus entry
    corecore