4 research outputs found
Overview of the interactive task in BioCreative V
Fully automated text mining (TM) systems promote efficient literature searching, retrieval, and review but are not sufficient to produce ready-to-consume curated documents. These systems are not meant to replace biocurators, but instead to assist them in one or more literature curation steps. To do so, the user interface is an important aspect that needs to be considered for tool adoption. The BioCreative Interactive task (IAT) is a track designed for exploring user-system interactions, promoting development of useful TM tools, and providing a communication channel between the biocuration and the TM communities. In BioCreative V, the IAT track followed a format similar to previous interactive tracks, where the utility and usability of TM tools, as well as the generation of use cases, have been the focal points. The proposed curation tasks are user-centric and formally evaluated by biocurators. In BioCreative V IAT, seven TM systems and 43 biocurators participated. Two levels of user participation were offered to broaden curator involvement and obtain more feedback on usability aspects. The full level participation involved training on the system, curation of a set of documents with and without TM assistance, tracking of time-on-task, and completion of a user survey. The partial level participation was designed to focus on usability aspects of the interface and not the performance per se. In this case, biocurators navigated the system by performing pre-designed tasks and then were asked whether they were able to achieve the task and the level of difficulty in completing the task. In this manuscript, we describe the development of the interactive task, from planning to execution and discuss major findings for the systems tested
Multimessenger Characterization of Markarian 501 during Historically Low X-Ray and -Ray Activity
We study the broadband emission of Mrk 501 using multiwavelength observations from 2017 to 2020 performed with a multitude of instruments, involving, among others, MAGIC, Fermi's Large Area Telescope (LAT), NuSTAR, Swift, GASP-WEBT, and the Owens Valley Radio Observatory. Mrk 501 showed an extremely low broadband activity, which may help to unravel its baseline emission. Nonetheless, significant flux variations are detected at all wave bands, with the highest occurring at X-rays and very-high-energy (VHE) γ-rays. A significant correlation (>3σ) between X-rays and VHE γ-rays is measured, supporting leptonic scenarios to explain the variable parts of the emission, also during low activity. This is further supported when we extend our data from 2008 to 2020, and identify, for the first time, significant correlations between the Swift X-Ray Telescope and Fermi-LAT. We additionally find correlations between high-energy γ-rays and radio, with the radio lagging by more than 100 days, placing the γ-ray emission zone upstream of the radio-bright regions in the jet. Furthermore, Mrk 501 showed a historically low activity in X-rays and VHE γ-rays from mid-2017 to mid-2019 with a stable VHE flux (>0.2 TeV) of 5% the emission of the Crab Nebula. The broadband spectral energy distribution (SED) of this 2 yr long low state, the potential baseline emission of Mrk 501, can be characterized with one-zone leptonic models, and with (lepto)-hadronic models fulfilling neutrino flux constraints from IceCube. We explore the time evolution of the SED toward the low state, revealing that the stable baseline emission may be ascribed to a standing shock, and the variable emission to an additional expanding or traveling shock
Analysis of chip formation mechanisms and modelling of slabber process
During the primary transformation in wood industry, logs are faced with conical rough milling cutters commonly named slabber or canter heads. Chips produced consist of raw materials for pulp paper and particleboard industries. The process efficiency of these industries partly comes from particle size distribution. However, chips formation is greatly dependent on milling conditions and material variability. Thus, this study aims at better understanding and predicting chips production in wood milling. The different mechanisms of their formation are studied through orthogonal cutting experiments at high cutting speed for beech and Douglas fir. Within these conditions, ejection of free water inside wood can be observed during fragmentation, particularly on beech. As previously seen in quasi-static experiments, chip thickness is proportional to the nominal cut thickness. Moreover, the grain orientation has a great influence on the cutting mechanisms, so as the nominal cut and the grows rings widths. This chip fragmentation study finally allows the improvement of the cutting conditions in rough milling. In order to optimize machine design as well as cutting geometry, a geometrical model of a generic slabber head is developed. This model allows the study of the effective cutting kinematics, the log-cutting edges interactions and the effective wood grain direction during cutting. This paper describes the great influence of the carriage position on cutting conditions. The results obtained here can be directly used by milling machine manufacturers.Allocation Spécifique Normalie