63 research outputs found
Efecto de la vitamina e en la alimentación del pavo en la acumulación tisular y estabilidad oxidativa.
El presente trabajo pretende evaluar la efectividad de las formas naturales de vitamina E en la acumulación tisular de tocoferol, así como en la estabilidad oxidativa in vivo y postmortem. El único factor de diferenciación fue el tipo de vitamina E (natural vs sintética) y concentración (Baja: 40 ppm y alta: 120 ppm) en el pienso. Adicionalmente se produjo un grupo control sin vitamina E añadida en el pienso. Se ha observado una relación dosisrespuesta lineal en la concentración de tocoferol en el plasma de los pavos, así como una tendencia (P=0.139) hacia una mayor concentración en los animales que recibieron la vitamina E en forma natural.. Existe una relación entre la concentración de tocoferol y de Metamioglobina en el músculo en el día 9 de almacenamiento refrigerado, evidenciándose una mayor efectividad de la forma natural. Se ha observado una menor concentración de ácidos grasos saturados en el grupo control y el de bajo nivel de suplementación. Asimismo, existe una tendencia hacia una menor concentración d estos ácidos grasos en los animales que reciben la forma natural de vitamina E (P=0,0658)
Exploring Health Science Students’ Notions on Organ Donation and Transplantation: A Multicenter Study
The knowledge acquired during university education about organ donation and transplantation (ODT) decisively influences the information future health professionals transmit. This is important in ODT where the participation of the general public is essential to obtain organs. Objective: To determine notions of Spanish medicine and nursing students on ODT and its relationship with attitude toward ODT. Methods and Design: and design. We conducted a sociologic, multicenter, and observational study. The population for our study consisted of medical and nursing students in Spanish universities. Our database was the Collaborative International Donor Project, stratified by geographic area and academic course. A validated questionnaire (PCID-DTO-RIOS) was self-administered and completed anonymously. Our sample consisted of 9598 medical and 10, 566 nursing students (99% confidence interval; precision of ±1%), stratified by geographic area and year of study. Results: The completion rate for our study was 90%. Only 20% (n=3640) of students thought their notions on ODT were good; 41% (n=7531) thought their notions were normal; 36% (n=6550) thought their notions were scarce. Comparing groups, there were differences between those who believed that their notions on ODT were good (44% nursing vs 56% medical students; P < .000), and those who believed it scarce (54% nursing vs 46% medical students; P < .000). Notions on ODT were related with attitude toward the donation of one''s own organs: those who considered their notions were good were more in favor then those who considered it scarce (88% vs 72%; P < .000). Conclusion: Only 20% of Spanish medical and nursing students thought their notions on ODT were good. Having good knowledge is related to a favorable attitude towards ODT. Receiving specific information on the subject could improve their knowledge about ODT during their training
Acceptability and feasibility of a virtual community of practice to primary care professionals regarding patient empowerment : A qualitative pilot study
Background: Virtual communities of practice (vCoPs) facilitate online learning via the exchange of experiences and knowledge between interested participants. Compared to other communities, vCoPs need to overcome technological structures and specific barriers. Our objective was to pilot the acceptability and feasibility of a vCoP aimed at improving the attitudes of primary care professionals to the empowerment of patients with chronic conditions. Methods: We used a qualitative approach based on 2 focus groups: one composed of 6 general practitioners and the other of 6 practice nurses. Discussion guidelines on the topics to be investigated were provided to the moderator. Sessions were audio-recorded and transcribed verbatim. Thematic analysis was performed using the ATLAS-ti software. Results: The available operating systems and browsers and the lack of suitable spaces and time were reported as the main difficulties with the vCoP. The vCoP was perceived to be a flexible learning mode that provided up-to-date resources applicable to routine practice and offered a space for the exchange of experiences and approaches. Conclusions: The results from this pilot study show that the vCoP was considered useful for learning how to empower patients. However, while vCoPs have the potential to facilitate learning and as shown create professional awareness regarding patient empowerment, attention needs to be paid to technological and access issues and the time demands on professionals. We collected relevant inputs to improve the features, content and educational methods to be included in further vCoP implementation. Trial registration: ClinicalTrials.gov, NCT02757781. Registered on 25 April 2016
Measurement of radon-induced backgrounds in the NEXT double beta decay experiment
The measurement of the internal 222Rn activity in the NEXT-White detector during the so-called Run-II period with 136Xe-depleted xenon is discussed in detail, together with its implications for double beta decay searches in NEXT. The activity is measured through the alpha production rate induced in the fiducial volume by 222Rn and its alpha-emitting progeny. The specific activity is measured to be (38.1 ± 2.2 (stat.) ± 5.9 (syst.)) mBq/m3. Radon-induced electrons have also been characterized from the decay of the 214Bi daughter ions plating out on the cathode of the time projection chamber. From our studies, we conclude that radon-induced backgrounds are sufficiently low to enable a successful NEXT-100 physics program, as the projected rate contribution should not exceed 0.1 counts/yr in the neutrinoless double beta decay sample
Boosting background suppression in the NEXT experiment through Richardson-Lucy deconvolution
Next-generation neutrinoless double beta decay experiments aim for half-life sensitivities of ~ 1027 yr, requiring suppressing backgrounds to < 1 count/tonne/yr. For this, any extra background rejection handle, beyond excellent energy resolution and the use of extremely radiopure materials, is of utmost importance. The NEXT experiment exploits differences in the spatial ionization patterns of double beta decay and single-electron events to discriminate signal from background. While the former display two Bragg peak dense ionization regions at the opposite ends of the track, the latter typically have only one such feature. Thus, comparing the energies at the track extremes provides an additional rejection tool. The unique combination of the topology-based background discrimination and excellent energy resolution (1% FWHM at the Q-value of the decay) is the distinguishing feature of NEXT. Previous studies demonstrated a topological background rejection factor of ~ 5 when reconstructing electron-positron pairs in the 208Tl 1.6 MeV double escape peak (with Compton events as background), recorded in the NEXT-White demonstrator at the Laboratorio Subterráneo de Canfranc, with 72% signal efficiency. This was recently improved through the use of a deep convolutional neural network to yield a background rejection factor of ~ 10 with 65% signal efficiency. Here, we present a new reconstruction method, based on the Richardson-Lucy deconvolution algorithm, which allows reversing the blurring induced by electron diffusion and electroluminescence light production in the NEXT TPC. The new method yields highly refined 3D images of reconstructed events, and, as a result, significantly improves the topological background discrimination. When applied to real-data 1.6 MeV e-e+ pairs, it leads to a background rejection factor of 27 at 57% signal efficiency. [Figure not available: see fulltext.]. © 2021, The Author(s)
Radiopurity assessment of the energy readout for the NEXT double beta decay experiment
[EN] The "Neutrino Experiment with a Xenon Time-Projection Chamber" (NEXT) experiment intends to investigate the neutrinoless double beta decay of 136Xe, and therefore requires a severe suppression of potential backgrounds. An extensive material screening and selection process was undertaken to quantify the radioactivity of the materials used in the experiment. Separate energy and tracking readout planes using different sensors allow us to combine the measurement of the topological signature of the event for background discrimination with the energy resolution optimization.
The design of radiopure readout planes, in direct contact with the gas detector medium, was especially challenging since the required components typically have activities too large for experiments demanding ultra-low background conditions. After studying the tracking plane, here the radiopurity control of the energy plane is presented, mainly based on gamma-ray spectroscopy using
ultra-low background germanium detectors at the Laboratorio Subterráneo de Canfranc (Spain).
All the available units of the selected model of photomultiplier have been screened together with most of the components for the bases, enclosures and windows. According to these results for the activity of the relevant radioisotopes, the selected components of the energy plane would give a
contribution to the overall background level in the region of interest of at most 2.4 × 10¿4 counts per keV, kg and year, satisfying the sensitivity requirements of the NEXT experiment.Special thanks are due to LSC directorate and staff for their strong support for performing the measurements at the LSC Radiopurity Service. We are really grateful to Grzegorz Zuzel for the radon emanation measurements. The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the Ministerio de Economia y Competitividad of Spain under grants FIS2014-53371-C04 and the Severo Ochoa Program SEV-2014-0398; the GVA of Spain under grant PROMETEO/2016/120; the Portuguese FCT and FEDER through the program COMPETE, project PTDC/FIS/103860/2008; the U.S. Department of Energy under contracts number DE-AC02-07CH11359 (Fermi National Accelerator Laboratory) and DE-FG02-13ER42020 (Texas A & and the University of Texas at Arlington.Cebrian, S.; Perez, J.; Bandac, I.; Labarga, L.; Álvarez-Puerta, V.; Azevedo, CDR.; Benlloch-Rodriguez, JM.... (2017). Radiopurity assessment of the energy readout for the NEXT double beta decay experiment. Journal of Instrumentation. 12. https://doi.org/10.1088/1748-0221/12/08/T08003S12Avignone, F. T., Elliott, S. R., & Engel, J. (2008). Double beta decay, Majorana neutrinos, and neutrino mass. Reviews of Modern Physics, 80(2), 481-516. doi:10.1103/revmodphys.80.481Martín-Albo, J., Muñoz Vidal, J., Ferrario, P., Nebot-Guinot, M., Gómez-Cadenas, J. J., … Cárcel, S. (2016). Sensitivity of NEXT-100 to neutrinoless double beta decay. Journal of High Energy Physics, 2016(5). doi:10.1007/jhep05(2016)159Renner, J., Farbin, A., Vidal, J. M., Benlloch-Rodríguez, J. M., Botas, A., Ferrario, P., … Borges, F. I. G. (2017). Background rejection in NEXT using deep neural networks. Journal of Instrumentation, 12(01), T01004-T01004. doi:10.1088/1748-0221/12/01/t01004Dafni, T., Álvarez, V., Bandac, I., Bettini, A., Borges, F. I. G. M., Camargo, M., … Conde, C. A. N. (2016). Results of the material screening program of the NEXT experiment. Nuclear and Particle Physics Proceedings, 273-275, 2666-2668. doi:10.1016/j.nuclphysbps.2015.10.024Cebrián, S., Pérez, J., Bandac, I., Labarga, L., Álvarez, V., Barrado, A. I., … Cárcel, S. (2015). Radiopurity assessment of the tracking readout for the NEXT double beta decay experiment. Journal of Instrumentation, 10(05), P05006-P05006. doi:10.1088/1748-0221/10/05/p05006Wang, X., Chen, X., Fu, C., Ji, X., Liu, X., Mao, Y., … Zhang, T. (2016). Material screening with HPGe counting station for PandaX experiment. Journal of Instrumentation, 11(12), T12002-T12002. doi:10.1088/1748-0221/11/12/t12002Barrow, P., Baudis, L., Cichon, D., Danisch, M., Franco, D., Kaether, F., … Wulf, J. (2017). Qualification tests of the R11410-21 photomultiplier tubes for the XENON1T detector. Journal of Instrumentation, 12(01), P01024-P01024. doi:10.1088/1748-0221/12/01/p01024Busto, J., Gonin, Y., Hubert, F., Hubert, P., & Vuilleumier, J.-M. (2002). Radioactivity measurements of a large number of adhesives. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 492(1-2), 35-42. doi:10.1016/s0168-9002(02)01280-9Nisi, S., Di Vacri, A., Di Vacri, M. L., Stramenga, A., & Laubenstein, M. (2009). Comparison of inductively coupled mass spectrometry and ultra low-level gamma-ray spectroscopy for ultra low background material selection. Applied Radiation and Isotopes, 67(5), 828-832. doi:10.1016/j.apradiso.2009.01.02
Electron drift properties in high pressure gaseous xenon
[EN] Gaseous time projection chambers (TPC) are a very attractive detector technology for particle tracking. Characterization of both drift velocity and di¿usion is of great importance to correctly assess their tracking capabilities. NEXT-White is a High Pressure Xenon gas TPC with electroluminescent ampli¿cation, a 1:2 scale model of the future NEXT-100detector, which will be dedicated to neutrinoless double beta decay searches. NEXT-White has been operating at Canfranc Underground Laboratory (LSC) since December2016. The drift parameters have been measured using 83mKr for a range of reduced drift ¿elds at two di¿erent pressure regimes, namely 7.2 bar and 9.1 bar. Theresults have been compared with Magboltz simulations. Agreement at the 5% level or better has been found for drift velocity, longitudinal di¿usion and transverse di¿usion.The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the European Union's Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Sklodowska-Curie Grant Agreements No. 674896, 690575 and 740055; the Ministerio de Economia y Competitividad of Spain under grants FIS2014-53371-C04, the Severo Ochoa Program SEV-2014-0398 and the Maria de Maetzu Program MDM-2016-0692; the GVA of Spain under grants PROMETEO/2016/120 and SEJI/2017/011; the Portuguese FCT and FEDER through the program COMPETE, projects PTDC/FIS-NUC/2525/2014 and UID/FIS/04559/2013; the U.S. Department of Energy under contracts number DE-AC02-07CH11359 (Fermi National Accelerator Laboratory), DE-FG02-13ER42020 (Texas A&M) and de-sc0017721 (University of Texas at Arlington); and the University of Texas at Arlington. We also warmly acknowledge the Laboratorio Nazionale di Gran Sasso (LNGS) and the Dark Side collaboration for their help with TPB coating of various parts of the NEXT-White TPC. Finally, we are grateful to the Laboratorio Subterraneo de Canfranc for hosting and supporting the NEXT experiment.Simon, A.; Felkai, R.; Martinez-Lema, G.; Monrabal, F.; Gonzalez-Diaz, D.; Sorel, M.; Hernando Morata, JA.... (2018). Electron drift properties in high pressure gaseous xenon. Journal of Instrumentation. 13. https://doi.org/10.1088/1748-0221/13/07/P07013S13Nygren, D. (2009). High-pressure xenon gas electroluminescent TPC for 0-ν ββ-decay search. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 603(3), 337-348. doi:10.1016/j.nima.2009.01.222Gómez Cadenas, J. J., Álvarez, V., Borges, F. I. G., Cárcel, S., Castel, J., Cebrián, S., … Dias, T. H. V. T. (2014). Present Status and Future Perspectives of the NEXT Experiment. Advances in High Energy Physics, 2014, 1-22. doi:10.1155/2014/907067Martín-Albo, J., Muñoz Vidal, J., Ferrario, P., Nebot-Guinot, M., Gómez-Cadenas, J. J., … Cárcel, S. (2016). Sensitivity of NEXT-100 to neutrinoless double beta decay. Journal of High Energy Physics, 2016(5). doi:10.1007/jhep05(2016)159Álvarez, V., Borges, F. I. G., Cárcel, S., Castel, J., Cebrián, S., Cervera, A., … Díaz, J. (2013). Initial results of NEXT-DEMO, a large-scale prototype of the NEXT-100 experiment. Journal of Instrumentation, 8(04), P04002-P04002. doi:10.1088/1748-0221/8/04/p04002Álvarez, V., Borges, F. I. G., Cárcel, S., Castel, J., Cebrián, S., Cervera, A., … Díaz, J. (2013). Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array. Journal of Instrumentation, 8(09), P09011-P09011. doi:10.1088/1748-0221/8/09/p09011Álvarez, V., Borges, F. I. G. M., Cárcel, S., Castel, J., Cebrián, S., Cervera, A., … Díaz, J. (2013). Near-intrinsic energy resolution for 30–662keV gamma rays in a high pressure xenon electroluminescent TPC. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 708, 101-114. doi:10.1016/j.nima.2012.12.123Ferrario, P., Laing, A., López-March, N., Gómez-Cadenas, J. J., Álvarez, V., … Cebrián, S. (2016). First proof of topological signature in the high pressure xenon gas TPC with electroluminescence amplification for the NEXT experiment. Journal of High Energy Physics, 2016(1). doi:10.1007/jhep01(2016)104Pack, J. L., Voshall, R. E., & Phelps, A. V. (1962). Drift Velocities of Slow Electrons in Krypton, Xenon, Deuterium, Carbon Monoxide, Carbon Dioxide, Water Vapor, Nitrous Oxide, and Ammonia. Physical Review, 127(6), 2084-2089. doi:10.1103/physrev.127.2084Pack, J. L., Voshall, R. E., Phelps, A. V., & Kline, L. E. (1992). Longitudinal electron diffusion coefficients in gases: Noble gases. Journal of Applied Physics, 71(11), 5363-5371. doi:10.1063/1.350555Bowe, J. C. (1960). Drift Velocity of Electrons in Nitrogen, Helium, Neon, Argon, Krypton, and Xenon. Physical Review, 117(6), 1411-1415. doi:10.1103/physrev.117.1411Patrick, E. L., Andrews, M. L., & Garscadden, A. (1991). Electron drift velocities in xenon and xenon‐nitrogen gas mixtures. Applied Physics Letters, 59(25), 3239-3240. doi:10.1063/1.105744English, W. N., & Hanna, G. C. (1953). GRID IONIZATION CHAMBER MEASUREMENTS OF ELECTRON DRIFT VELOCITIES IN GAS MIXTURES. Canadian Journal of Physics, 31(5), 768-797. doi:10.1139/p53-070Hunter, S. R., Carter, J. G., & Christophorou, L. G. (1988). Low-energy electron drift and scattering in krypton and xenon. Physical Review A, 38(11), 5539-5551. doi:10.1103/physreva.38.5539Kobayashi, S., Hasebe, N., Hosojima, T., Ishizaki, T., Iwamatsu, K., Mimura, M., … Ishizuka, A. (2006). Ratio of Transverse Diffusion Coefficient to Mobility of Electrons in High-Pressure Xenon and Xenon Doped with Hydrogen. Japanese Journal of Applied Physics, 45(10A), 7894-7900. doi:10.1143/jjap.45.7894Álvarez, V., Borges, F. I. G., Cárcel, S., Cebrián, S., Cervera, A., Conde, C. A. N., … Esteve, R. (2013). Ionization and scintillation response of high-pressure xenon gas to alpha particles. Journal of Instrumentation, 8(05), P05025-P05025. doi:10.1088/1748-0221/8/05/p05025Lorca, D., Martín-Albo, J., Laing, A., Ferrario, P., Gómez-Cadenas, J. J., Álvarez, V., … Cebrián, S. (2014). Characterisation of NEXT-DEMO using xenon KαX-rays. Journal of Instrumentation, 9(10), P10007-P10007. doi:10.1088/1748-0221/9/10/p10007Kusano, H., Lopes, J. A. M., Miyajima, M., & Hasebe, N. (2013). Longitudinal and transverse diffusion of electrons in high-pressure xenon. Journal of Instrumentation, 8(01), C01028-C01028. doi:10.1088/1748-0221/8/01/c01028Henriques, C. A. O., Freitas, E. D. C., Azevedo, C. D. R., González-Díaz, D., Mano, R. D. P., Jorge, M. R., … Álvarez, V. (2017). Secondary scintillation yield of xenon with sub-percent levels of CO2 additive for rare-event detection. Physics Letters B, 773, 663-671. doi:10.1016/j.physletb.2017.09.017Obert, E. F. (1948). Compressibility Chart and the Ideal Reduced Volume. Industrial & Engineering Chemistry, 40(11), 2185-2186. doi:10.1021/ie50467a036Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., … Barrand, G. (2003). Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3), 250-303. doi:10.1016/s0168-9002(03)01368-8González-Díaz, D., Monrabal, F., & Murphy, S. (2018). Gaseous and dual-phase time projection chambers for imaging rare processes. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 878, 200-255. doi:10.1016/j.nima.2017.09.024Álvarez, V., Borges, F. I. G. M., Cárcel, S., Castel, J., Cebrián, S., Cervera, A., … Díaz, J. (2014). Characterization of a medium size Xe/TMA TPC instrumented with microbulk Micromegas, using low-energy γ-rays. Journal of Instrumentation, 9(04), C04015-C04015. doi:10.1088/1748-0221/9/04/c0401
Microscopic simulation of xenon-based optical TPCs in the presence of molecular additives
[EN] We introduce a simulation framework for the transport of high and low energy electrons in xenon-based optical time projection chambers (OTPCs). The simulation relies on elementary cross sections (electron-atom and electron-molecule) and incorporates, in order to compute the gas scintillation, the reaction/quenching rates (atom-atom and atom-molecule) of the first 41 excited
states of xenon and the relevant associated excimers, together with their radiative cascade. The results compare positively with observations made in pure xenon and its mixtures with CO2 and CF4 in a range of pressures from 0.1 to 10 bar. This work sheds some light on the elementary processes responsible for the primary and secondary xenon-scintillation mechanisms in the presence
of additives, that are of interest to the OTPC technology.DGD is supported by the Ramon y Cajal program (Spain) under contract number RYC-2015-18820. The authors want to acknowledge the RD51 collaboration for encouragement and support during the elaboration of this work, and in particular discussions with F. Resnati, A. Milov, V. Peskov, M. Suzuki and A. F. Borghesani.
The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the Ministerio de Economia y Competitividad of Spain under grants FIS2014-53371-C04 and the Severo Ochoa Program SEV-2014-0398; the GVA of Spain under grant PROM-ETEO/2016/120; the Portuguese FCT and FEDER through the program COMPETE, project PTDC/FIS-NUC/2525/2014 and UID/FIS/04559/2013; the U.S. Department of Energy under contracts number DE-AC02-07CH11359 (Fermi National Accelerator Laboratory) and DE-FG02-13ER42020 (Texas A& and the University of Texas at Arlington.Azevedo, C.; Gonzalez-Diaz, D.; Biagi, SF.; Oliveira, CAB.; Henriques, CAO.; Escada, J.; Monrabal, F.... (2018). Microscopic simulation of xenon-based optical TPCs in the presence of molecular additives. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment. 877:157-172. https://doi.org/10.1016/j.nima.2017.08.049S15717287
RICORS2040 : The need for collaborative research in chronic kidney disease
Chronic kidney disease (CKD) is a silent and poorly known killer. The current concept of CKD is relatively young and uptake by the public, physicians and health authorities is not widespread. Physicians still confuse CKD with chronic kidney insufficiency or failure. For the wider public and health authorities, CKD evokes kidney replacement therapy (KRT). In Spain, the prevalence of KRT is 0.13%. Thus health authorities may consider CKD a non-issue: very few persons eventually need KRT and, for those in whom kidneys fail, the problem is 'solved' by dialysis or kidney transplantation. However, KRT is the tip of the iceberg in the burden of CKD. The main burden of CKD is accelerated ageing and premature death. The cut-off points for kidney function and kidney damage indexes that define CKD also mark an increased risk for all-cause premature death. CKD is the most prevalent risk factor for lethal coronavirus disease 2019 (COVID-19) and the factor that most increases the risk of death in COVID-19, after old age. Men and women undergoing KRT still have an annual mortality that is 10- to 100-fold higher than similar-age peers, and life expectancy is shortened by ~40 years for young persons on dialysis and by 15 years for young persons with a functioning kidney graft. CKD is expected to become the fifth greatest global cause of death by 2040 and the second greatest cause of death in Spain before the end of the century, a time when one in four Spaniards will have CKD. However, by 2022, CKD will become the only top-15 global predicted cause of death that is not supported by a dedicated well-funded Centres for Biomedical Research (CIBER) network structure in Spain. Realizing the underestimation of the CKD burden of disease by health authorities, the Decade of the Kidney initiative for 2020-2030 was launched by the American Association of Kidney Patients and the European Kidney Health Alliance. Leading Spanish kidney researchers grouped in the kidney collaborative research network Red de Investigación Renal have now applied for the Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS) call for collaborative research in Spain with the support of the Spanish Society of Nephrology, Federación Nacional de Asociaciones para la Lucha Contra las Enfermedades del Riñón and ONT: RICORS2040 aims to prevent the dire predictions for the global 2040 burden of CKD from becoming true
- …