430 research outputs found
La dación en pago como forma de extinción de las obligaciones
Treball Final de Grau en Dret. Codi: DR1052. Curs acadèmic: 2016-201
Model predictive control based on LPV models with parameter-varying delays
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper presents a Model Predictive Control (MPC) strategy based on Linear Parameter Varying (LPV) models with varying delays affecting states and inputs. The proposed control approach allows the controller to accommodate the scheduling parameters and delay change. By computing the prediction of the state variables and delay along a prediction time horizon, the system model can be modified according to the evaluation of the estimated state and delay at each time instant. Moreover, the solution of the optimization problem associated with the MPC design is achieved by solving a series of Quadratic Programming (QP) problem at each time instant. This iterative approach reduces the computational burden compared to the solution of a non-linear optimization problem. A pasteurization plant system is used as a case study to demonstrate the effectiveness of the proposed approach.Peer ReviewedPostprint (author's final draft
Output-feedback model predictive control of a pasteurization pilot plant based on an LPV model
In order to optimize the trade-off between components life and energy consumption, the integration of a system health management and control modules is required. This paper proposes the integration of model predictive control (MPC) with a fatigue estimation approach that minimizes the damage of the components of a pasteurization plant. The fatigue estimation is assessed with the rainflow counting algorithm. Using data from this algorithm, a simplified model that characterizes the health of the
system is developed and integrated with MPC. The MPC controller objective is modified by adding an extra criterion that takes into account the accumulated damage. But, a steady-state offset is created by adding this extra criterion. Finally, by including an integral action in the MPC controller, the steady-state error for regulation purpose is eliminated. The proposed control scheme is validated in simulation using a simulator of a utility-scale pasteurization plant.Peer ReviewedPostprint (author's final draft
Reliability-based economic model predictive control for generalized flow-based networks including actuators' health-aware capabilities
This paper proposes a reliability-based economic model predictive control (MPC) strategy for the management of generalized flow-based networks, integrating some ideas on network service reliability, dynamic safety stock planning, and degradation of equipment health. The proposed strategy is based on a single-layer economic optimisation problem with dynamic constraints, which includes two enhancements with respect to existing approaches. The first enhancement considers chance-constraint programming to compute an optimal inventory replenishment policy based on a desired risk acceptability level, leading to dynamically allocate safety stocks in flow-based networks to satisfy non-stationary flow demands. The second enhancement computes a smart distribution of the control effort and maximises actuators’ availability by estimating their degradation and reliability. The proposed approach is illustrated with an application of water transport networks using the Barcelona network as the considered case study.Peer ReviewedPostprint (author's final draft
Partitioning approaches for large-scale water transport networks
The final publication is available at link.springer.comThis book presents a set of approaches for the real-time monitoring and control of drinking-water networks based on advanced information and communication technologies. It shows the reader how to achieve significant improvements in efficiency in terms of water use, energy consumption, water loss minimization, and water quality guarantees.
The methods and approaches presented are illustrated and have been applied using real-life pilot demonstrations based on the drinking-water network in Barcelona, Spain. The proposed approaches and tools cover:
- decision-making support for real-time optimal control of water transport networks, explaining how stochastic model predictive control algorithms that take explicit account of uncertainties associated with energy prices and real demand allow the main flow andpressure actuators—pumping stations and pressure regulation valves—and intermediate storage tanks to be operated to meet demand using the most sustainable types of source and with minimum electricity costs;
- decision-making support for monitoring water balance and distribution network quality in real time, implementing fault detection anddiagnosis techniques and using information from hundreds of flow,pressure, and water-quality sensors together with hydraulic and quality-parameter-evolution models to detect and locate leaks in the network, possible breaches in water quality, and failures in sensors and/or actuators;
- consumer-demand prediction, based on smart metering techniques, producing detailed analyses and forecasts of consumption patterns,providing a customer communications service, and suggesting economic measures intended to promote more efficient use of water at the household level.
Researchers and engineers working with drinking-water networks will find this a vital support in overcoming the problems associated with increased population, environmental sensitivities and regulation, aging infrastructures, energy requirements, and limited water sources.Peer ReviewedPostprint (author's final draft
Reliable fault-tolerant model predictive control of drinking water transport networks
This paper proposes a reliable fault-tolerant model predictive control applied to drinking water transport networks. After a fault has occurred, the predictive controller should be redesigned to cope with the fault effect. Before starting to apply the fault-tolerant control strategy, it should be evaluated whether the predictive controller will be able to continue operating after the fault appearance. This is done by means of a structural analysis to determine loss of controllability after the fault complemented with feasibility analysis of the optimization problem related to the predictive controller design, so as to consider the fault effect in actuator constraints. Moreover, by evaluating the admissibility of the different actuator-fault configurations, critical actuators regarding fault tolerance can be identified considering structural, feasibility, performance and reliability analyses. On the other hand, the proposed approach allows a degradation analysis of the system to be performed. As a result of these analyses, the predictive controller design can be modified by adapting constraints such that the best achievable performance with some pre-established level of reliability will be achieved. The proposed approach is tested on the Barcelona drinking water transport network.Postprint (author's final draft
Modelling approaches for predictive control of large-scale sewage systems
In this report, model predictive control (MPC) of large-scale sewage systems is addressed considering different modelling approaches that include several inherent continuous/discrete phenomena
(overflows in sewers and tanks) and elements (weirs) in the system that result in distinct
behaviour depending on the dynamic state (
flow/volume) of the network. These behaviours
can not be neglected nor can be modelled by a pure linear representation. In order the MPC controller takes into account these phenomena and elements, a modelling approach based on piece-wise linear functions is proposed and compared against a hybrid modelling approach previously
reported by the authors. Control performance results and associated computation times
of the closed-loop scheme considering both modelling approaches are compared by using a real case study based on the Barcelona sewer network.Preprin
Probability-guaranteed set-membership state estimation for polynomially uncertain linear time-invariant systems
2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksConventional deterministic set-membership (SM) estimation is limited to unknown-but-bounded uncertainties. In order to exploit distributional information of probabilistic uncertainties, a probability-guaranteed SM state estimation approach is proposed for uncertain linear time-invariant systems. This approach takes into account polynomial dependence on probabilistic uncertain parameters as well as additive stochastic noises. The purpose is to compute, at each time instant, a bounded set that contains the actual state with a guaranteed probability. The proposed approach relies on the extended form of an observer representation over a sliding window. For the offline observer synthesis, a polynomial-chaos-based method is proposed to minimize the averaged H2 estimation performance with respect to probabilistic uncertain parameters. It explicitly accounts for the polynomial uncertainty structure, whilst most literature relies on conservative affine or polytopic overbounding. Online state estimation restructures the extended observer form, and constructs a Gaussian mixture model to approximate the state distribution. This enables computationally efficient ellipsoidal calculus to derive SM estimates with a predefined confidence level. The proposed approach preserves time invariance of the uncertain parameters and fully exploits the polynomial uncertainty structure, to achieve tighter SM bounds. This improvement is illustrated by a numerical example with a comparison to a deterministic zonotopic method.Peer ReviewedPostprint (author's final draft
Sensor-fault tolerance using robust MPC with set-based state estimation and active fault isolation
In this paper, a sensor fault-tolerant control (FTC) scheme using robust model predictive control (MPC) and set theoretic fault detection and isolation (FDI) is proposed. The MPC controller is used to both robustly control the plant and actively guarantee fault isolation (FI). In this scheme, fault detection (FD) is passive by interval observers, while fault isolation (FI) is active by MPC. The advantage of the proposed approach consists in using MPC to actively decouple the effect of sensor faults on the outputs such that one output component only corresponds to one sensor fault in terms of FI, which can utilize the feature of sensor faults for FI. A numerical example is used to illustrate the effectiveness of the proposed scheme.Postprint (author’s final draft
Robust MPC for actuator-fault tolerance using set-based passive fault detection and active fault isolation
In this paper, an actuator fault-tolerant control (FTC) scheme is proposed, which is based on tube-based model predictive control (MPC) and set-theoretic fault detection and isolation (FDI). As a robust MPC technique, tube-based MPC, can effectively deal with system constraints and uncertainties with relatively low computational complexity. Set-based FDI can robustly detect and isolate actuator faults. Here, fault detection (FD) is passive by invariant sets, while fault isolation (FI) is active by tubes. Using the constraint-handling ability of MPC controllers, an active FI approach is implemented. A numerical example illustrates the effectiveness of the proposed approach.Postprint (author’s final draft
- …