38 research outputs found

    Propuesta de intervención del riesgo psicosocial en el dominio de liderazgo en una empresa consultora de Bogotá.

    Get PDF
    Proponer una intervención en el riesgo psicosocial en el dominio de liderazgo en una empresa de consultoría de Bogotá.El estrés se ha catalogado como la enfermedad del siglo XXI, en las organizaciones existen numerosas variables que se asocian al nivel de estrés en las personas, una de las causas principales asociadas al estrés es el estilo de liderazgo de los líderes en la organización. El estrés es entendido como una dimensión de análisis del riesgo psicosocial percibido, por lo cual el estilo de liderazgo se asocia a éste también. Las investigaciones le aducen efectos relacionados a la baja productividad, altos niveles de ausentismo e incapacidades, poca concentración, entre otras que generan pérdidas para las empresas y afectan sus objetivos organizacionales. Esta investigación se realizó en una empresa consultora de Bogotá, que presentó una disminución en ventas anuales, un alto índice de rotación, ausentismo, incapacidades, y aumento de quejas hacia los líderes. Por consiguiente, se analizaron los resultados de la Batería de Riesgo Psicosocial, mostrando un alto riesgo en el nivel de estrés y el dominio de liderazgo. Adicionalmente se aplicó el Multifactorial Leadership Questionnaire para determinar la percepción de los colaboradores frente al estilo de liderazgo. Se encontró que los altos niveles de estrés percibidos por los colaboradores en las distintas áreas están asociados principalmente con un estilo de liderazgo de tipo transaccional y que el estilo de liderazgo de tipo transformacional es el de menor porcentaje en todas las áreas de la organización. Se elaboró una propuesta de intervención con el fin de trabajar con cada uno de los líderes hacia un estilo de liderazgo transformacionalStress has been labeled as the illness of the twenty first century, in the organizations there are numerous variables associated to people´s stress levels, one of its main causes is associated with the leadership style of the leaders in the organization. Stress is understood as a dimension of analysis of the perceived psychosocial risk, and in so the leadership style is also associated to it. Research links stress to low productivity, high rate of absenteeism, low concentration, among other factors that generate loses for the company and affect its organizational goals. This research was done in a Consulting Company from Bogotá, which presented a decrease in its annual sales of 16%, a high turnover rate, high absenteeism, and complains towards leaders. Therefore, the results from the Psychosocial Risk Battery were analyzed, and the results showed a high level of risk in the levels of stress and leadership domain. In addition, the Multifactorial Leadership Questionnaire was applied to determined the perception of the towards the leadership style. The results showed high levels of stress perceived by the workers in areas associated mainly with a transactional leadership style, and that the transformational leadership style was the one with the lowest percentage in all areas of the organization. A proposal as elaborated to work with each leader to reach a more transformational leadership style within the company

    Efficacy and safety of the CVnCoV SARS-CoV-2 mRNA vaccine candidate in ten countries in Europe and Latin America (HERALD): a randomised, observer-blinded, placebo-controlled, phase 2b/3 trial

    Full text link
    Background: Additional safe and efficacious vaccines are needed to control the COVID-19 pandemic. We aimed to analyse the efficacy and safety of the CVnCoV SARS-CoV-2 mRNA vaccine candidate. Methods: HERALD is a randomised, observer-blinded, placebo-controlled, phase 2b/3 clinical trial conducted in 47 centres in ten countries in Europe and Latin America. By use of an interactive web response system and stratification by country and age group (18–60 years and ≥61 years), adults with no history of virologically confirmed COVID-19 were randomly assigned (1:1) to receive intramuscularly either two 0·6 mL doses of CVnCoV containing 12 μg of mRNA or two 0·6 mL doses of 0·9% NaCl (placebo) on days 1 and 29. The primary efficacy endpoint was the occurrence of a first episode of virologically confirmed symptomatic COVID-19 of any severity and caused by any strain from 15 days after the second dose. For the primary endpoint, the trial was considered successful if the lower limit of the CI was greater than 30%. Key secondary endpoints were the occurrence of a first episode of virologically confirmed moderate-to-severe COVID-19, severe COVID-19, and COVID-19 of any severity by age group. Primary safety outcomes were solicited local and systemic adverse events within 7 days after each dose and unsolicited adverse events within 28 days after each dose in phase 2b participants, and serious adverse events and adverse events of special interest up to 1 year after the second dose in phase 2b and phase 3 participants. Here, we report data up to June 18, 2021. The study is registered at ClinicalTrials.gov, NCT04652102, and EudraCT, 2020–003998–22, and is ongoing. Findings: Between Dec 11, 2020, and April 12, 2021, 39 680 participants were enrolled and randomly assigned to receive either CVnCoV (n=19 846) or placebo (n=19 834), of whom 19 783 received at least one dose of CVnCoV and 19 746 received at least one dose of placebo. After a mean observation period of 48·2 days (SE 0·2), 83 cases of COVID-19 occurred in the CVnCoV group (n=12 851) in 1735·29 person-years and 145 cases occurred in the placebo group (n=12 211) in 1569·87 person-years, resulting in an overall vaccine efficacy against symptomatic COVID-19 of 48·2% (95·826% CI 31·0–61·4; p=0·016). Vaccine efficacy against moderate-to-severe COVID-19 was 70·7% (95% CI 42·5–86·1; CVnCoV 12 cases in 1735·29 person-years, placebo 37 cases in 1569·87 person-years). In participants aged 18–60 years, vaccine efficacy against symptomatic disease was 52·5% (95% CI 36·2–64·8; CVnCoV 71 cases in 1591·47 person-years, placebo, 136 cases in 1449·23 person-years). Too few cases occurred in participants aged 61 years or older (CVnCoV 12, placebo nine) to allow meaningful assessment of vaccine efficacy. Solicited adverse events, which were mostly systemic, were more common in CVnCoV recipients (1933 [96·5%] of 2003) than in placebo recipients (1344 [67·9%] of 1978), with 542 (27·1%) CVnCoV recipients and 61 (3·1%) placebo recipients reporting grade 3 solicited adverse events. The most frequently reported local reaction after any dose in the CVnCoV group was injection-site pain (1678 [83·6%] of 2007), with 22 grade 3 reactions, and the most frequently reported systematic reactions were fatigue (1603 [80·0%] of 2003) and headache (1541 [76·9%] of 2003). 82 (0·4%) of 19 783 CVnCoV recipients reported 100 serious adverse events and 66 (0·3%) of 19 746 placebo recipients reported 76 serious adverse events. Eight serious adverse events in five CVnCoV recipients and two serious adverse events in two placebo recipients were considered vaccination-related. None of the fatal serious adverse events reported (eight in the CVnCoV group and six in the placebo group) were considered to be related to study vaccination. Adverse events of special interest were reported for 38 (0·2%) participants in the CVnCoV group and 31 (0·2%) participants in the placebo group. These events were considered to be related to the trial vaccine for 14 (<0·1%) participants in the CVnCoV group and for five (<0·1%) participants in the placebo group. Interpretation: CVnCoV was efficacious in the prevention of COVID-19 of any severity and had an acceptable safety profile. Taking into account the changing environment, including the emergence of SARS-CoV-2 variants, and timelines for further development, the decision has been made to cease activities on the CVnCoV candidate and to focus efforts on the development of next-generation vaccine candidates. Funding: German Federal Ministry of Education and Research and CureVac

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    Full text link
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    Full text link
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    Full text link
    DUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    Full text link
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    Full text link
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    Full text link
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    First Measurement of the Total Inelastic Cross-Section of Positively-Charged Kaons on Argon at Energies Between 5.0 and 7.5 GeV

    Full text link
    International audienceProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/cc beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each beam momentum setting was measured to be 380±\pm26 mbarns for the 6 GeV/cc setting and 379±\pm35 mbarns for the 7 GeV/cc setting

    Supernova Pointing Capabilities of DUNE

    Full text link
    International audienceThe determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. A highly effective method of reconstructing supernova directions within the Deep Underground Neutrino Experiment (DUNE) is introduced. The supernova neutrino pointing resolution is studied by simulating and reconstructing electron-neutrino charged-current absorption on 40^{40}Ar and elastic scattering of neutrinos on electrons. Procedures to reconstruct individual interactions, including a newly developed technique called ``brems flipping'', as well as the burst direction from an ensemble of interactions are described. Performance of the burst direction reconstruction is evaluated for supernovae happening at a distance of 10 kpc for a specific supernova burst flux model. The pointing resolution is found to be 3.4 degrees at 68% coverage for a perfect interaction-channel classification and a fiducial mass of 40 kton, and 6.6 degrees for a 10 kton fiducial mass respectively. Assuming a 4% rate of charged-current interactions being misidentified as elastic scattering, DUNE's burst pointing resolution is found to be 4.3 degrees (8.7 degrees) at 68% coverage
    corecore