13 research outputs found
Phenotypic and genotypic landscape of PROKR2 in neuroendocrine disorders
Prokineticin receptor 2 (PROKR2) encodes for a G-protein-coupled receptor that can bind PROK1 and PROK2. Mice lacking Prokr2 have been shown to present abnormal olfactory bulb formation as well as defects in GnRH neuron migration. Patients carrying mutations in PROKR2 typically present hypogonadotropic hypogonadism, anosmia/hyposmia or Kallmann Syndrome. More recently variants in PROKR2 have been linked to several other endocrine disorders. In particular, several patients with pituitary disorders have been reported, ranging from mild phenotypes, such as isolated growth hormone deficiency, to more severe ones, such as septo-optic dysplasia. Here we summarize the changing landscape of PROKR2-related disease, the variants reported to date, and discuss their origin, classification and functional assessment.Fil: Martínez Mayer, Julián Jorge. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, Biotecnología y Biología Traslacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pérez Millán, María Inés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
From Pituitary Stem Cell Differentiation to Regenerative Medicine
The anterior pituitary gland is comprised of specialized cell-types that produce and secrete polypeptide hormones in response to hypothalamic input and feedback from target organs. These specialized cells arise during embryonic development, from stem cells that express SOX2 and the pituitary transcription factor PROP1, which is necessary to establish the stem cell pool and promote an epithelial to mesenchymal-like transition, releasing progenitors from the niche. Human and mouse embryonic stem cells can differentiate into all major hormone-producing cell types of the anterior lobe in a highly plastic and dynamic manner. More recently human induced pluripotent stem cells (iPSCs) emerged as a viable alternative due to their plasticity and high proliferative capacity. This mini-review gives an overview of the major advances that have been achieved to develop protocols to generate pituitary hormone-producing cell types from stem cells and how these mechanisms are regulated. We also discuss their application in pituitary diseases, such as pituitary hormone deficiencies.Fil: Camilletti, María Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, Biotecnología y Biología Traslacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Martínez Mayer, Julián Jorge. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, Biotecnología y Biología Traslacional; ArgentinaFil: Vishnopolska, Sebastián Alexis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, Biotecnología y Biología Traslacional; ArgentinaFil: Pérez Millán, María Inés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, Biotecnología y Biología Traslacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
Differential alternative splicing analysis links variation in ZRSR2 to a novel type of oral-facial-digital syndrome
International audiencePURPOSE: Oral-facial-digital (OFD) syndromes are genetically heterogeneous developmental disorders, caused by pathogenic variants in genes involved in primary cilia formation and function. We identified a previously undescribed type of OFD with brain anomalies, ranging from alobar holoprosencephaly to pituitary anomalies, in 6 unrelated families. METHODS: Exome sequencing of affected probands was supplemented with alternative splicing analysis in patient and control lymphoblastoid and fibroblast cell lines, and primary cilia structure analysis in patient fibroblasts. RESULTS: In one family with 2 affected males we identified a germline variant in the last exon of ZRSR2, NM_005089.4:c.1211_1212del NP_005080.1:p.(Gly404GlufsTer23), while 7 affected males from 5 unrelated families were hemizygous for the ZRSR2 variant NM_005089.4:c.1207_1208del NP_005080.1:p.(Arg403GlyfsTer24), either occurring de novo or inherited in an X-linked recessive pattern. ZRSR2, located on chromosome Xp22.2, encodes a splicing factor of the minor spliceosome complex which recognizes minor introns, representing 0.35% of human introns. Patient samples showed significant enrichment of minor intron retention. Among differentially spliced targets are ciliopathy-related genes, such as TMEM107 and CIBAR1. Primary fibroblasts containing the NM_005089.4:c.1207_1208del ZRSR2 variant had abnormally elongated cilia, confirming an association between defective U12-type intron splicing, OFD and abnormal primary cilia formation. CONCLUSION: We introduce a novel type of OFD associated with elongated cilia and differential splicing of minor intron containing genes due to germline variation in ZRSR2
High-throughput splicing assays identify missense and silent splice-disruptive POU1F1 variants underlying pituitary hormone deficiency
International audiencePituitary hormone deficiency occurs in ∼1:4,000 live births. Approximately 3% of the cases are due to mutations in the alpha isoform of POU1F1, a pituitary-specific transcriptional activator. We found four separate heterozygous missense variants in unrelated individuals with hypopituitarism that were predicted to affect a minor isoform, POU1F1 beta, which can act as a transcriptional repressor. These variants retain repressor activity, but they shift splicing to favor the expression of the beta isoform, resulting in dominant-negative loss of function. Using a high-throughput splicing reporter assay, we tested 1,070 single-nucleotide variants in POU1F1. We identified 96 splice-disruptive variants, including 14 synonymous variants. In separate cohorts, we found two additional synonymous variants nominated by this screen that co-segregate with hypopituitarism. This study underlines the importance of evaluating the impact of variants on splicing and provides a catalog for interpretation of variants of unknown significance in POU1F1
State of the climate in 2017
In 2017, the dominant greenhouse gases released into Earth's atmosphere-carbon dioxide, methane, and nitrous oxide-reached new record highs. The annual global average carbon dioxide concentration at Earth's surface for 2017 was 405.0 ± 0.1 ppm, 2.2 ppm greater than for 2016 and the highest in the modern atmospheric measurement record and in ice core records dating back as far as 800 000 years. The global growth rate of CO2 has nearly quadrupled since the early 1960s. With ENSO-neutral conditions present in the central and eastern equatorial Pacific Ocean during most of the year and weak La Niña conditions notable at the start and end, the global temperature across land and ocean surfaces ranked as the second or third highest, depending on the dataset, since records began in the mid-to-late 1800s. Notably, it was the warmest non-El Niño year in the instrumental record. Above Earth's surface, the annual lower tropospheric temperature was also either second or third highest according to all datasets analyzed. The lower stratospheric temperature was about 0.2°C higher than the record cold temperature of 2016 according to most of the in situ and satellite datasets. Several countries, including Argentina, Uruguay, Spain, and Bulgaria, reported record high annual temperatures. Mexico broke its annual record for the fourth consecutive year. On 27 January, the temperature reached 43.4°C at Puerto Madryn, Argentina-the highest temperature recorded so far south (43°S) anywhere in the world. On 28 May in Turbat, western Pakistan, the high of 53.5°C tied Pakistan's all-time highest temperature and became the world-record highest temperature for May. In the Arctic, the 2017 land surface temperature was 1.6°C above the 1981-2010 average, the second highest since the record began in 1900, behind only 2016. The five highest annual Arctic temperatures have all occurred since 2007. Exceptionally high temperatures were observed in the permafrost across the Arctic, with record values reported in much of Alaska and northwestern Canada. In August, high sea surface temperature (SST) records were broken for the Chukchi Sea, with some regions as warm as +11°C, or 3° to 4°C warmer than the longterm mean (1982-present). According to paleoclimate studies, today's abnormally warm Arctic air and SSTs have not been observed in the last 2000 years. The increasing temperatures have led to decreasing Arctic sea ice extent and thickness. On 7 March, sea ice extent at the end of the growth season saw its lowest maximum in the 37-year satellite record, covering 8% less area than the 1981-2010 average. The Arctic sea ice minimum on 13 September was the eighth lowest on record and covered 25% less area than the long-term mean. Preliminary data indicate that glaciers across the world lost mass for the 38th consecutive year on record; the declines are remarkably consistent from region to region. Cumulatively since 1980, this loss is equivalent to slicing 22 meters off the top of the average glacier. Antarctic sea ice extent remained below average for all of 2017, with record lows during the first four months. Over the continent, the austral summer seasonal melt extent and melt index were the second highest since 2005, mostly due to strong positive anomalies of air temperature over most of the West Antarctic coast. In contrast, the East Antarctic Plateau saw record low mean temperatures in March. The year was also distinguished by the second smallest Antarctic ozone hole observed since 1988. Across the global oceans, the overall long-term SST warming trend remained strong. Although SST cooled slightly from 2016 to 2017, the last three years produced the three highest annual values observed; these high anomalies have been associated with widespread coral bleaching. The most recent global coral bleaching lasted three full years, June 2014 to May 2017, and was the longest, most widespread, and almost certainly most destructive such event on record. Global integrals of 0-700-m and 0-2000-m ocean heat content reached record highs in 2017, and global mean sea level during the year became the highest annual average in the 25-year satellite altimetry record, rising to 77 mm above the 1993 average. In the tropics, 2017 saw 85 named tropical storms, slightly above the 1981-2010 average of 82. The North Atlantic basin was the only basin that featured an above-normal season, its seventh most active in the 164-year record. Three hurricanes in the basin were especially notable. Harvey produced record rainfall totals in areas of Texas and Louisiana, including a storm total of 1538.7 mm near Beaumont, Texas, which far exceeds the previous known U.S. tropical cyclone record of 1320.8 mm. Irma was the strongest tropical cyclone globally in 2017 and the strongest Atlantic hurricane outside of the Gulf of Mexico and Caribbean on record with maximum winds of 295 km h-1. Maria caused catastrophic destruction across the Caribbean Islands, including devastating wind damage and flooding across Puerto Rico. Elsewhere, the western North Pacific, South Indian, and Australian basins were all particularly quiet. Precipitation over global land areas in 2017 was clearly above the long-term average. Among noteworthy regional precipitation records in 2017, Russia reported its second wettest year on record (after 2013) and Norway experienced its sixth wettest year since records began in 1900. Across India, heavy rain and flood-related incidents during the monsoon season claimed around 800 lives. In August and September, above-normal precipitation triggered the most devastating floods in more than a decade in the Venezuelan states of Bolívar and Delta Amacuro. In Nigeria, heavy rain during August and September caused the Niger and Benue Rivers to overflow, bringing floods that displaced more than 100 000 people. Global fire activity was the lowest since at least 2003; however, high activity occurred in parts of North America, South America, and Europe, with an unusually long season in Spain and Portugal, which had their second and third driest years on record, respectively. Devastating fires impacted British Columbia, destroying 1.2 million hectares of timber, bush, and grassland, due in part to the region's driest summer on record. In the United States, an extreme western wildfire season burned over 4 million hectares; the total costs of $18 billion tripled the previous U.S. annual wildfire cost record set in 1991
State of the climate in 2017
In 2017, the dominant greenhouse gases released into Earth's atmosphere-carbon dioxide, methane, and nitrous oxide-reached new record highs. The annual global average carbon dioxide concentration at Earth's surface for 2017 was 405.0 ± 0.1 ppm, 2.2 ppm greater than for 2016 and the highest in the modern atmospheric measurement record and in ice core records dating back as far as 800 000 years. The global growth rate of CO2 has nearly quadrupled since the early 1960s. With ENSO-neutral conditions present in the central and eastern equatorial Pacific Ocean during most of the year and weak La Niña conditions notable at the start and end, the global temperature across land and ocean surfaces ranked as the second or third highest, depending on the dataset, since records began in the mid-to-late 1800s. Notably, it was the warmest non-El Niño year in the instrumental record. Above Earth's surface, the annual lower tropospheric temperature was also either second or third highest according to all datasets analyzed. The lower stratospheric temperature was about 0.2°C higher than the record cold temperature of 2016 according to most of the in situ and satellite datasets. Several countries, including Argentina, Uruguay, Spain, and Bulgaria, reported record high annual temperatures. Mexico broke its annual record for the fourth consecutive year. On 27 January, the temperature reached 43.4°C at Puerto Madryn, Argentina-the highest temperature recorded so far south (43°S) anywhere in the world. On 28 May in Turbat, western Pakistan, the high of 53.5°C tied Pakistan's all-time highest temperature and became the world-record highest temperature for May. In the Arctic, the 2017 land surface temperature was 1.6°C above the 1981-2010 average, the second highest since the record began in 1900, behind only 2016. The five highest annual Arctic temperatures have all occurred since 2007. Exceptionally high temperatures were observed in the permafrost across the Arctic, with record values reported in much of Alaska and northwestern Canada. In August, high sea surface temperature (SST) records were broken for the Chukchi Sea, with some regions as warm as +11°C, or 3° to 4°C warmer than the longterm mean (1982-present). According to paleoclimate studies, today's abnormally warm Arctic air and SSTs have not been observed in the last 2000 years. The increasing temperatures have led to decreasing Arctic sea ice extent and thickness. On 7 March, sea ice extent at the end of the growth season saw its lowest maximum in the 37-year satellite record, covering 8% less area than the 1981-2010 average. The Arctic sea ice minimum on 13 September was the eighth lowest on record and covered 25% less area than the long-term mean. Preliminary data indicate that glaciers across the world lost mass for the 38th consecutive year on record; the declines are remarkably consistent from region to region. Cumulatively since 1980, this loss is equivalent to slicing 22 meters off the top of the average glacier. Antarctic sea ice extent remained below average for all of 2017, with record lows during the first four months. Over the continent, the austral summer seasonal melt extent and melt index were the second highest since 2005, mostly due to strong positive anomalies of air temperature over most of the West Antarctic coast. In contrast, the East Antarctic Plateau saw record low mean temperatures in March. The year was also distinguished by the second smallest Antarctic ozone hole observed since 1988. Across the global oceans, the overall long-term SST warming trend remained strong. Although SST cooled slightly from 2016 to 2017, the last three years produced the three highest annual values observed; these high anomalies have been associated with widespread coral bleaching. The most recent global coral bleaching lasted three full years, June 2014 to May 2017, and was the longest, most widespread, and almost certainly most destructive such event on record. Global integrals of 0-700-m and 0-2000-m ocean heat content reached record highs in 2017, and global mean sea level during the year became the highest annual average in the 25-year satellite altimetry record, rising to 77 mm above the 1993 average. In the tropics, 2017 saw 85 named tropical storms, slightly above the 1981-2010 average of 82. The North Atlantic basin was the only basin that featured an above-normal season, its seventh most active in the 164-year record. Three hurricanes in the basin were especially notable. Harvey produced record rainfall totals in areas of Texas and Louisiana, including a storm total of 1538.7 mm near Beaumont, Texas, which far exceeds the previous known U.S. tropical cyclone record of 1320.8 mm. Irma was the strongest tropical cyclone globally in 2017 and the strongest Atlantic hurricane outside of the Gulf of Mexico and Caribbean on record with maximum winds of 295 km h-1. Maria caused catastrophic destruction across the Caribbean Islands, including devastating wind damage and flooding across Puerto Rico. Elsewhere, the western North Pacific, South Indian, and Australian basins were all particularly quiet. Precipitation over global land areas in 2017 was clearly above the long-term average. Among noteworthy regional precipitation records in 2017, Russia reported its second wettest year on record (after 2013) and Norway experienced its sixth wettest year since records began in 1900. Across India, heavy rain and flood-related incidents during the monsoon season claimed around 800 lives. In August and September, above-normal precipitation triggered the most devastating floods in more than a decade in the Venezuelan states of Bolívar and Delta Amacuro. In Nigeria, heavy rain during August and September caused the Niger and Benue Rivers to overflow, bringing floods that displaced more than 100 000 people. Global fire activity was the lowest since at least 2003; however, high activity occurred in parts of North America, South America, and Europe, with an unusually long season in Spain and Portugal, which had their second and third driest years on record, respectively. Devastating fires impacted British Columbia, destroying 1.2 million hectares of timber, bush, and grassland, due in part to the region's driest summer on record. In the United States, an extreme western wildfire season burned over 4 million hectares; the total costs of $18 billion tripled the previous U.S. annual wildfire cost record set in 1991
State of the climate in 2017
In 2017, the dominant greenhouse gases released into Earth's atmosphere-carbon dioxide, methane, and nitrous oxide-reached new record highs. The annual global average carbon dioxide concentration at Earth's surface for 2017 was 405.0 ± 0.1 ppm, 2.2 ppm greater than for 2016 and the highest in the modern atmospheric measurement record and in ice core records dating back as far as 800 000 years. The global growth rate of CO2 has nearly quadrupled since the early 1960s. With ENSO-neutral conditions present in the central and eastern equatorial Pacific Ocean during most of the year and weak La Niña conditions notable at the start and end, the global temperature across land and ocean surfaces ranked as the second or third highest, depending on the dataset, since records began in the mid-to-late 1800s. Notably, it was the warmest non-El Niño year in the instrumental record. Above Earth's surface, the annual lower tropospheric temperature was also either second or third highest according to all datasets analyzed. The lower stratospheric temperature was about 0.2°C higher than the record cold temperature of 2016 according to most of the in situ and satellite datasets. Several countries, including Argentina, Uruguay, Spain, and Bulgaria, reported record high annual temperatures. Mexico broke its annual record for the fourth consecutive year. On 27 January, the temperature reached 43.4°C at Puerto Madryn, Argentina-the highest temperature recorded so far south (43°S) anywhere in the world. On 28 May in Turbat, western Pakistan, the high of 53.5°C tied Pakistan's all-time highest temperature and became the world-record highest temperature for May. In the Arctic, the 2017 land surface temperature was 1.6°C above the 1981-2010 average, the second highest since the record began in 1900, behind only 2016. The five highest annual Arctic temperatures have all occurred since 2007. Exceptionally high temperatures were observed in the permafrost across the Arctic, with record values reported in much of Alaska and northwestern Canada. In August, high sea surface temperature (SST) records were broken for the Chukchi Sea, with some regions as warm as +11°C, or 3° to 4°C warmer than the longterm mean (1982-present). According to paleoclimate studies, today's abnormally warm Arctic air and SSTs have not been observed in the last 2000 years. The increasing temperatures have led to decreasing Arctic sea ice extent and thickness. On 7 March, sea ice extent at the end of the growth season saw its lowest maximum in the 37-year satellite record, covering 8% less area than the 1981-2010 average. The Arctic sea ice minimum on 13 September was the eighth lowest on record and covered 25% less area than the long-term mean. Preliminary data indicate that glaciers across the world lost mass for the 38th consecutive year on record; the declines are remarkably consistent from region to region. Cumulatively since 1980, this loss is equivalent to slicing 22 meters off the top of the average glacier. Antarctic sea ice extent remained below average for all of 2017, with record lows during the first four months. Over the continent, the austral summer seasonal melt extent and melt index were the second highest since 2005, mostly due to strong positive anomalies of air temperature over most of the West Antarctic coast. In contrast, the East Antarctic Plateau saw record low mean temperatures in March. The year was also distinguished by the second smallest Antarctic ozone hole observed since 1988. Across the global oceans, the overall long-term SST warming trend remained strong. Although SST cooled slightly from 2016 to 2017, the last three years produced the three highest annual values observed; these high anomalies have been associated with widespread coral bleaching. The most recent global coral bleaching lasted three full years, June 2014 to May 2017, and was the longest, most widespread, and almost certainly most destructive such event on record. Global integrals of 0-700-m and 0-2000-m ocean heat content reached record highs in 2017, and global mean sea level during the year became the highest annual average in the 25-year satellite altimetry record, rising to 77 mm above the 1993 average. In the tropics, 2017 saw 85 named tropical storms, slightly above the 1981-2010 average of 82. The North Atlantic basin was the only basin that featured an above-normal season, its seventh most active in the 164-year record. Three hurricanes in the basin were especially notable. Harvey produced record rainfall totals in areas of Texas and Louisiana, including a storm total of 1538.7 mm near Beaumont, Texas, which far exceeds the previous known U.S. tropical cyclone record of 1320.8 mm. Irma was the strongest tropical cyclone globally in 2017 and the strongest Atlantic hurricane outside of the Gulf of Mexico and Caribbean on record with maximum winds of 295 km h-1. Maria caused catastrophic destruction across the Caribbean Islands, including devastating wind damage and flooding across Puerto Rico. Elsewhere, the western North Pacific, South Indian, and Australian basins were all particularly quiet. Precipitation over global land areas in 2017 was clearly above the long-term average. Among noteworthy regional precipitation records in 2017, Russia reported its second wettest year on record (after 2013) and Norway experienced its sixth wettest year since records began in 1900. Across India, heavy rain and flood-related incidents during the monsoon season claimed around 800 lives. In August and September, above-normal precipitation triggered the most devastating floods in more than a decade in the Venezuelan states of Bolívar and Delta Amacuro. In Nigeria, heavy rain during August and September caused the Niger and Benue Rivers to overflow, bringing floods that displaced more than 100 000 people. Global fire activity was the lowest since at least 2003; however, high activity occurred in parts of North America, South America, and Europe, with an unusually long season in Spain and Portugal, which had their second and third driest years on record, respectively. Devastating fires impacted British Columbia, destroying 1.2 million hectares of timber, bush, and grassland, due in part to the region's driest summer on record. In the United States, an extreme western wildfire season burned over 4 million hectares; the total costs of $18 billion tripled the previous U.S. annual wildfire cost record set in 1991
Reasons to be cheerful? Reflections on GPs' responses to depression
60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes