102 research outputs found
Spin canted magnetism, decoupling of charge and spin ordering in NdNiO
We report detailed magnetization measurements on the perovskite oxide
NdNiO. This system has a first order metal-insulator (M-I) transition at
about 200 K which is associated with charge ordering. There is also a
concurrent paramagnetic to antiferromagnetic spin ordering transition in the
system. We show that the antiferromagnetic state of the nickel sublattice is
spin canted. We also show that the concurrency of the charge ordering and spin
ordering transitions is seen only while warming up the system from low
temperature. The transitions are not concurrent while cooling the system
through the M-I transition temperature. This is explained based on the fact
that the charge ordering transition is first order while the spin ordering
transition is continuous. In the magnetically ordered state the system exhibits
ZFC-FC irreversibilities, as well as history-dependent magnetization and aging.
Our analysis rules out the possibility of spin-glass or superparamagnetism and
suggests that the irreversibilities originate from magnetocrystalline
anisotropy and domain wall pinning.Comment: 8 pages, 7 figure
Spin-orbit induced mixed-spin ground state in NiO perovskites probed by XAS: new insight into the metal to insulator transition
We report on a Ni L edges x-ray absorption spectroscopy (XAS) study
in NiO perovskites. These compounds exhibit a metal to insulator ()
transition as temperature decreases. The L edge presents a clear
splitting in the insulating state, associated to a less hybridized ground
state. Using charge transfer multiplet calculations, we establish the
importance of the crystal field and 3d spin-orbit coupling to create a
mixed-spin ground state. We explain the transition in NiO
perovskites in terms of modifications in the Ni crystal field splitting
that induces a spin transition from an essentially low-spin (LS) to a
mixed-spin state.Comment: 4 pages, 4 figures, accepted as PRB - Rapid Comm. Dez. 200
Unprecedented magnetoresistance in Cd-substituted Tl2Mn2O7 pyrochlores
3 pages, 3 figures.Moderate pressure techniques (P = 20 kbar) have been used to prepare Tl2–xCdxMn2O7 (0x0.4) pyrochlore-like materials. The x = 0.2 compound has been characterized by neutron powder diffraction, magnetic, magnetotransport, and Hall measurements. This material is ferromagnetic below TC = 110 K. Both electrical resistance and magnetoresistance (MR) are enhanced with respect to stoichiometric Tl2Mn2O7, due to the drastic reduction in the number of carriers (electrons) induced by hole doping. MR(0.5 T) is higher than 106% at 120 K, and MR(9 T) is 30% at room temperature. We show that hole doped derivatives of Tl2Mn2O7 are promising candidates in which to search for large bulk magnetoresistance.The author are grateful for the financial support of
CICyT (Project Nos. PB97-1181 and MAT99-1045).Peer reviewe
Infinite Layer LaNiO(2): Ni(1+)is not Cu(2+)
The Ni ion in LaNiO has the same formal ionic configuration as
does Cu in isostructural CaCuO, but it is reported to be nonmagnetic and
probably metallic whereas CaCuO is a magnetic insulator. From ab initio
calculations we trace its individualistic behavior to (1) reduced
mixing due to an increase of the separation of site energies () of at least 2 eV, and (2) important Ni mixing with
La states that leads to Fermi surface pockets of La
character that hole-dope the Ni 3d band.Correlation effects do not appear to be
large in LaNiO. However, ad hoc increase of the intraatomic repulsion on
the Ni site (using the LDA+U method) is found to lead to a novel correlated
state: (i) the transition metal and states undergo
consecutive Mott transitions, (ii) their moments are antialigned leading
(ideally) to a "singlet" ion in which there are two polarized orbitals, and
(iii) mixing of the upper Hubbard band with the La
states leaves considerable transition metal 3d character in a band pinned to
the Fermi level. The magnetic configuration is more indicative of a Ni
ion in this limit, although the actual charge changes little with U.Comment: 7 pages, 8 figure
Electronic structure, local magnetism, and spin-orbit effects of Ir(IV)-, Ir(V)-, and Ir(VI)-based compounds
Element- and orbital-selective x-ray absorption and magnetic circular dichroism measurements are carried out to probe the electronic structure and magnetism of Ir 5d electronic states in double perovskite Sr2MIrO6 (M=Mg, Ca, Sc, Ti, Ni, Fe, Zn, In) and La2NiIrO6 compounds. All the studied systems present a significant influence of spin-orbit interactions in the electronic ground state. In addition, we find that the Ir 5d local magnetic moment shows different character depending on the oxidation state despite the net magnetization being similar for all the compounds. Ir carries an orbital contribution comparable to the spin contribution for Ir4+ (5d5) and Ir5+ (5d4) oxides, whereas the orbital contribution is quenched for Ir6+ (5d3) samples. Incorporation of a magnetic 3d atom allows getting insight into the magnetic coupling between 5d and 3d transition metals. Together with previous susceptibility and neutron diffraction measurements, the results indicate that Ir carries a significant local magnetic moment even in samples without a 3d metal. The size of the (small) net magnetization of these compounds is a result of predominant antiferromagnetic interactions between local moments coupled with structural details of each perovskite structure.This work was partially supported by the Spanish MINECO Projects No. MAT2014-54425-R and No. MAT2013-41099-R and by the Comunidad de Madrid Project No. S2009/PPQ-1551. M. A. Laguna-Marco acknowledges CSIC and European
Social Fund for a JAE-Doc contract. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE)
Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357.Peer Reviewe
Reflectividad, transmisión y actividad fotoinducida del RNiO3 (r=Pr,Sm) en el infrarrojo
Con el fin de esclarecer el mecanismo responsable de la transición metal-aislador que experimentan RNiO₃, (R - Pr, Sm) a Tm.a ∼135K y ∼403K respectivamente, se ha estudiado con espectroscopia infrarroja la evolución con la temperatura de los espectros de reflectividad, transmisión y la actividad fotoinducida. Los espectros de reflectividad se ajustaron por medio de una simulación de la función dieléctrica mediante un modelo clásico de osciladores de Lorentz amortiguados a los que se agregó un término de Drude para describir el comportamiento del plasma. La conductividad óptica experimental así determinada ha sido analizada empleando la teoría de pequeños polarones de Heese v Reik. El análisis de los espectros de reflectividad y el excelente acuerdo hallado entre la teoría de pequeños polarones y los resultados experimentales nos ha permitido verificar la intensidad de la interacción electrón-fonón y así confirmar la participación determinante de fonones en las propiedades de transporte de RNi0₃ (R=Pr, Sm). De esta manera, la transición metal-aislador esta directamente relacionada con la localización a TM.A de electrones auto atrapados en entornos polarónicos.Centro de Química Inorgánic
Reflectividad, transmisión y actividad fotoinducida del RNiO3 (r=Pr,Sm) en el infrarrojo
Con el fin de esclarecer el mecanismo responsable de la transición metal-aislador que experimentan RNiO₃, (R - Pr, Sm) a Tm.a ∼135K y ∼403K respectivamente, se ha estudiado con espectroscopia infrarroja la evolución con la temperatura de los espectros de reflectividad, transmisión y la actividad fotoinducida. Los espectros de reflectividad se ajustaron por medio de una simulación de la función dieléctrica mediante un modelo clásico de osciladores de Lorentz amortiguados a los que se agregó un término de Drude para describir el comportamiento del plasma. La conductividad óptica experimental así determinada ha sido analizada empleando la teoría de pequeños polarones de Heese v Reik. El análisis de los espectros de reflectividad y el excelente acuerdo hallado entre la teoría de pequeños polarones y los resultados experimentales nos ha permitido verificar la intensidad de la interacción electrón-fonón y así confirmar la participación determinante de fonones en las propiedades de transporte de RNi0₃ (R=Pr, Sm). De esta manera, la transición metal-aislador esta directamente relacionada con la localización a TM.A de electrones auto atrapados en entornos polarónicos.Centro de Química Inorgánic
First order transition and phase separation in pyrochlores with colossal-magnetoresistance
TlMnO pyrochlores present colossal magnetoresistance (CMR)
around the long range ferromagnetic ordering temperature (T). The
character of this magnetic phase transition has been determined to be first
order, by purely magnetic methods, in contrast to the second order character
previously reported by Zhao et al. (Phys. Rev. Lett. 83, 219 (1999)). The
highest CMR effect, as in TlCdMnO, corresponds to a
stronger first order character. This character implies a second type of
magnetic interaction, besides the direct superexchange between the Mn
ions, as well as a phase coexistence. A model is proposed, with a complete
Hamiltonian (including superexchange and an indirect interaction), which
reproduce the observed phenomenology.Comment: 6 pages. Figures include
On the fraction of dark matter in charged massive particles (CHAMPs)
From various cosmological, astrophysical and terrestrial requirements, we
derive conservative upper bounds on the present-day fraction of the mass of the
Galactic dark matter (DM) halo in charged massive particles (CHAMPs). If dark
matter particles are neutral but decay lately into CHAMPs, the lack of
detection of heavy hydrogen in sea water and the vertical pressure equilibrium
in the Galactic disc turn out to put the most stringent bounds. Adopting very
conservative assumptions about the recoiling velocity of CHAMPs in the decay
and on the decay energy deposited in baryonic gas, we find that the lifetime
for decaying neutral DM must be > (0.9-3.4)x 10^3 Gyr. Even assuming the
gyroradii of CHAMPs in the Galactic magnetic field are too small for halo
CHAMPs to reach Earth, the present-day fraction of the mass of the Galactic
halo in CHAMPs should be < (0.4-1.4)x 10^{-2}. We show that redistributing the
DM through the coupling between CHAMPs and the ubiquitous magnetic fields
cannot be a solution to the cuspy halo problem in dwarf galaxies.Comment: 21 pages, 2 figures. To appear in JCA
- …