63 research outputs found
Large-scale optimization with the primal-dual column generation method
The primal-dual column generation method (PDCGM) is a general-purpose column
generation technique that relies on the primal-dual interior point method to
solve the restricted master problems. The use of this interior point method
variant allows to obtain suboptimal and well-centered dual solutions which
naturally stabilizes the column generation. As recently presented in the
literature, reductions in the number of calls to the oracle and in the CPU
times are typically observed when compared to the standard column generation,
which relies on extreme optimal dual solutions. However, these results are
based on relatively small problems obtained from linear relaxations of
combinatorial applications. In this paper, we investigate the behaviour of the
PDCGM in a broader context, namely when solving large-scale convex optimization
problems. We have selected applications that arise in important real-life
contexts such as data analysis (multiple kernel learning problem),
decision-making under uncertainty (two-stage stochastic programming problems)
and telecommunication and transportation networks (multicommodity network flow
problem). In the numerical experiments, we use publicly available benchmark
instances to compare the performance of the PDCGM against recent results for
different methods presented in the literature, which were the best available
results to date. The analysis of these results suggests that the PDCGM offers
an attractive alternative over specialized methods since it remains competitive
in terms of number of iterations and CPU times even for large-scale
optimization problems.Comment: 28 pages, 1 figure, minor revision, scaled CPU time
Integer Programming Algorithms: A Framework and State-of-the-Art Survey
A unifying framework is developed to facilitate the understanding of most known computational approaches to integer programming. A number of currently operational algorithms are related to this framework, and prospects for future progress are assessed.
Performances improvement of the column generation algorithm: application to vehicle routing problems
- …