19 research outputs found

    A novel back-side light-trapping structure for thin silicon solar cells

    Get PDF
    Decreasing silicon consumption is one of the most important ways of reducing the cost of solar cells. High-quality light trapping provides the possibility of making thinner silicon solar cells without sacrificing optical efficiency. In this work we introduce an advanced bi-periodic back-side structure with promising light-trapping properties. The structure combines high coupling efficiency of light to oblique travelling modes with the ability of keeping the light within the solar cell for multiple reflections between the front and the rear side. We have done numerical simulations of light trapping for normal incidence in our structure, and we show that our structure with real materials holds the potential to exceed the light trapping of an ideal Lambertian surface. We also investigate the behaviour of our light-trapping structure as a function of angle and state of polarization, and compare it to Lambertian behaviour

    Photochromic mechanism in oxygen-containing yttrium hydride thin films: An optical perspective

    Get PDF
    Oxygen-containing yttrium hydride thin films exhibit photochromic behavior: Transparent thin films reversibly switch from a transparent state to a photodarkened state after being illuminated with UV or blue light. From optical spectrophotometry and ellipsometry measurements of the transparent state and photodarkened state, it is concluded that the photochromic effect can be explained by the gradual growth, under illumination, of metallic domains within the initial wide-band-gap semiconducting lattice. This conclusion is supported by Raman measurements

    Hydrogen complexes in Zn deficient ZnO

    No full text
    acceptedVersio

    Incorporation of Erbium in Porous Silicon

    No full text
    corecore