48 research outputs found

    Prolonged In Vivo Retention of a Cathepsin D Targeted Optical Contrast Agent in a Mouse Model of Alzheimer\u27s Disease.

    Get PDF
    BACKGROUND: Cathepsin D (CatD) is a lysosomal protease that is elevated early in Alzheimer\u27s disease (AD). We have previously developed a Targeted contrast agent (CA) to detect CatD activity in vivo, consisting of a magnetic resonance imaging/fluorescent moiety linked to a cell penetrating peptide (CPP) by means of a CatD cleavage site and have demonstrated its uptake in the brain of an AD mouse model. OBJECTIVE: The purpose of this study was to characterize the in vivo retention of a near infra-red fluorescent dye labeled version of this CA. METHODS: Six adult C57Bl/6 wild-type mice and six adult 5XFAD transgenic AD mice were studied using a small animal imaging system at five and twelve months of age using our novel Targeted CA, or two different control CAs; a Non-Targeted (lacking the CatD cleavage site) and a Non-Penetrating (lacking the CPP). Following intravenous CA administration, the optical signal was recorded within the brain and uptake and washout curves were measured and fitted to a one-phase exponential decay curve. RESULTS: In all wild-type and 5XFAD mice, the washout of the Targeted CA that included a CPP domain was significantly slower than the washout of the Non-Penetrating and Non-Targeted CA. Furthermore, the washout of the CatD Targeted CA was significantly slower in the 5XFAD mice compared to the age matched wild-type controls (p \u3c  0.05) at 5 and 12 months of age. Control CAs showed no differences in washout. CONCLUSIONS: The prolonged retention of the CatD targeted CA in 5XFAD mice suggests this agent may be useful for AD detection

    Progress and challenges in the vaccine-based treatment of head and neck cancers

    Get PDF
    Head and neck (HN) cancer represents one of the most challenging diseases because the mortality remains high despite advances in early diagnosis and treatment. Although vaccine-based approaches for the treatment of advanced squamous cell carcinoma of the head and neck have achieved limited clinical success, advances in cancer immunology provide a strong foundation and powerful new tools to guide current attempts to develop effective cancer vaccines. This article reviews what has to be rather what has been done in the field for the development of future vaccines in HN tumours

    The elegans of spindle assembly

    Get PDF
    The Caenorhabditis elegans one-cell embryo is a powerful system in which to study microtubule organization because this large cell assembles both meiotic and mitotic spindles within the same cytoplasm over the course of 1 h in a stereotypical manner. The fertilized oocyte assembles two consecutive acentrosomal meiotic spindles that function to reduce the replicated maternal diploid set of chromosomes to a single-copy haploid set. The resulting maternal DNA then unites with the paternal DNA to form a zygotic diploid complement, around which a centrosome-based mitotic spindle forms. The early C. elegans embryo is amenable to live-cell imaging and electron tomography, permitting a detailed structural comparison of the meiotic and mitotic modes of spindle assembly

    What determines cell size?

    Get PDF
    AbstractFirst paragraph (this article has no abstract) For well over 100 years, cell biologists have been wondering what determines the size of cells. In modern times, we know all of the molecules that control the cell cycle and cell division, but we still do not understand how cell size is determined. To check whether modern cell biology has made any inroads on this age-old question, BMC Biology asked several heavyweights in the field to tell us how they think cell size is controlled, drawing on a range of different cell types. The essays in this collection address two related questions - why does cell size matter, and how do cells control it

    Choanal Atresia

    No full text

    Laryngeal Transplantation: Research, Clinical Experience, and Future Goals

    No full text
    The loss of a functional voice because of trauma or laryngectomy can have a devastating impact on a patient's self-esteem and overall quality of life. Unfortunately, even with advances in organ preservation therapy, total laryngectomy is frequently necessary in the treatment of laryngeal carcinoma. Over the past several years, the senior author initiated research into laryngeal transplantation with the goal of restoring lung-powered speech for these patients. The research led to the development of an animal model and several groundbreaking studies in this area. Investigations into the use of irradiation, single-drug and multidrug immunosuppression, and the effects of mammalian target of rapamycin (mTOR) inhibitors have produced significant insight into laryngeal allograft preservation. The laboratory research culminated in the first successful total laryngeal transplant in 1998. The patient had suffered significant laryngeal trauma and strongly desired return of laryngeal phonation. The patient has been maintained on multidrug immunosuppression with minimal difficulties. Now more than 8 years after the procedure, the patient continues to have an excellent voice and dramatically improved quality of life. Recent data suggest that altered immunosuppression schedules and the use of mTOR inhibitors may allow patients to minimize immunosuppression-related adverse effects and ameliorate the risk of developing recurrent or de novo carcinoma. These data, when considered in combination with the progress made over the past 14 years, lead us to believe that the future of laryngeal transplantation is bright
    corecore