2,622 research outputs found

    The secret world of shrimps: polarisation vision at its best

    Get PDF
    Animal vision spans a great range of complexity, with systems evolving to detect variations in optical intensity, distribution, colour, and polarisation. Polarisation vision systems studied to date detect one to four channels of linear polarisation, combining them in opponent pairs to provide intensity-independent operation. Circular polarisation vision has never been seen, and is widely believed to play no part in animal vision. Polarisation is fully measured via Stokes' parameters--obtained by combined linear and circular polarisation measurements. Optimal polarisation vision is the ability to see Stokes' parameters: here we show that the crustacean \emph{Gonodactylus smithii} measures the exact components required. This vision provides optimal contrast-enhancement, and precise determination of polarisation with no confusion-states or neutral-points--significant advantages. We emphasise that linear and circular polarisation vision are not different modalities--both are necessary for optimal polarisation vision, regardless of the presence of strongly linear or circularly polarised features in the animal's environment.Comment: 10 pages, 6 figures, 2 table

    Thermoelastic properties of magnesiowustite, (Mg1-xFex)O: determination of the Anderson-Gruneisen parameter by time-of-flight neutron powder diffraction at simultaneous high pressures and temperatures

    Get PDF
    The ability to perform neutron diffraction studies at simultaneous high pressures and high temperatures is a relatively recent development. The suitability of this technique for determining P-V-T equations of state has been investigated by measuring the lattice parameters of Mg1-xFexO ( x = 0.2, 0.3, 0.4), in the range P < 10.3 GPa and 300 < T < 986 K, by time-of-flight neutron powder diffraction. Pressures were determined using metallic Fe as a marker and temperatures were measured by neutron absorption resonance radiography. Within the resolution of the experiment, no evidence was found for any change in the temperature derivative of the isothermal incompressibility, partial derivative K-T/partial derivative T, with composition. By assuming that the equation-of-state parameters either varied linearly or were invariant with composition, the 60 measured state points were fitted simultaneously to a P-V-T-x equation of state, leading to values of partial derivative K-T/partial derivative T = -0.024 (9) GPa K-1 and of the isothermal Anderson-Gruneisen parameter delta(T) = 4.0 (16) at 300 K. Two designs of simultaneous high-P/T cell were employed during this study. It appears that, by virtue of its extended pressure range, a design using toroidal gaskets is more suitable for equation-of-state studies than is the system described by Le Godec, Dove, Francis, Kohn, Marshall, Pawley, Price, Redfern, Rhodes, Ross, Schofield, Schooneveld, Syfosse, Tucker & Welch [Mineral. Mag. (2001), 65, 737-748]. (c) 2008 International Union of Crystallography Printed in Singapore - all rights reserved

    The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)

    Get PDF
    IMPORTANCE: Definitions of sepsis and septic shock were last revised in 2001. Considerable advances have since been made into the pathobiology (changes in organ function, morphology, cell biology, biochemistry, immunology, and circulation), management, and epidemiology of sepsis, suggesting the need for reexamination. OBJECTIVE: To evaluate and, as needed, update definitions for sepsis and septic shock. PROCESS: A task force (n = 19) with expertise in sepsis pathobiology, clinical trials, and epidemiology was convened by the Society of Critical Care Medicine and the European Society of Intensive Care Medicine. Definitions and clinical criteria were generated through meetings, Delphi processes, analysis of electronic health record databases, and voting, followed by circulation to international professional societies, requesting peer review and endorsement (by 31 societies listed in the Acknowledgment). KEY FINDINGS FROM EVIDENCE SYNTHESIS: Limitations of previous definitions included an excessive focus on inflammation, the misleading model that sepsis follows a continuum through severe sepsis to shock, and inadequate specificity and sensitivity of the systemic inflammatory response syndrome (SIRS) criteria. Multiple definitions and terminologies are currently in use for sepsis, septic shock, and organ dysfunction, leading to discrepancies in reported incidence and observed mortality. The task force concluded the term severe sepsis was redundant. RECOMMENDATIONS: Sepsis should be defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. For clinical operationalization, organ dysfunction can be represented by an increase in the Sequential [Sepsis-related] Organ Failure Assessment (SOFA) score of 2 points or more, which is associated with an in-hospital mortality greater than 10%. Septic shock should be defined as a subset of sepsis in which particularly profound circulatory, cellular, and metabolic abnormalities are associated with a greater risk of mortality than with sepsis alone. Patients with septic shock can be clinically identified by a vasopressor requirement to maintain a mean arterial pressure of 65 mm Hg or greater and serum lactate level greater than 2 mmol/L (>18 mg/dL) in the absence of hypovolemia. This combination is associated with hospital mortality rates greater than 40%. In out-of-hospital, emergency department, or general hospital ward settings, adult patients with suspected infection can be rapidly identified as being more likely to have poor outcomes typical of sepsis if they have at least 2 of the following clinical criteria that together constitute a new bedside clinical score termed quickSOFA (qSOFA): respiratory rate of 22/min or greater, altered mentation, or systolic blood pressure of 100 mm Hg or less. CONCLUSIONS AND RELEVANCE: These updated definitions and clinical criteria should replace previous definitions, offer greater consistency for epidemiologic studies and clinical trials, and facilitate earlier recognition and more timely management of patients with sepsis or at risk of developing sepsis

    Multimode quantum interference of photons in multiport integrated devices

    Get PDF
    We report the first demonstration of quantum interference in multimode interference (MMI) devices and a new complete characterization technique that can be applied to any photonic device that removes the need for phase stable measurements. MMI devices provide a compact and robust realization of NxM optical circuits, which will dramatically reduce the complexity and increase the functionality of future generations of quantum photonic circuits

    Minimization of phonon-tunneling dissipation in mechanical resonators

    Get PDF
    Micro- and nanoscale mechanical resonators have recently emerged as ubiquitous devices for use in advanced technological applications, for example in mobile communications and inertial sensors, and as novel tools for fundamental scientific endeavors. Their performance is in many cases limited by the deleterious effects of mechanical damping. Here, we report a significant advancement towards understanding and controlling support-induced losses in generic mechanical resonators. We begin by introducing an efficient numerical solver, based on the "phonon-tunneling" approach, capable of predicting the design-limited damping of high-quality mechanical resonators. Further, through careful device engineering, we isolate support-induced losses and perform the first rigorous experimental test of the strong geometric dependence of this loss mechanism. Our results are in excellent agreement with theory, demonstrating the predictive power of our approach. In combination with recent progress on complementary dissipation mechanisms, our phonon-tunneling solver represents a major step towards accurate prediction of the mechanical quality factor.Comment: 12 pages, 4 figure

    Current concepts of the management of dental extractions for patients taking warfarin

    Get PDF
    The document attached has been archived with permission from the Australian Dental Association. An external link to the publisher’s copy is included.Background: Controversy has surrounded the correct management of patients therapeutically anticoagulated with warfarin who require dental extractions. The risk of bleeding must be weighed up against the risk of thromboembolism when deciding whether to interfere with a patient's warfarin regimen. An improved understanding of the importance of fibrinolytic mechanisms in the oral cavity has resulted in the development of various local measures to enable these patients to be treated on an outpatient basis. Methods: A review of the literature was undertaken. This was supplemented by the authors' clinical trials and extensive clinical experience with anticoagulated patients. Results: Various protocols for treating patients taking warfarin have been reviewed and summarized and an overview of the haemostatic and fibrinolytic systems is presented. A protocol for management of warfarinized patients requiring dental extractions in the outpatient setting is proposed. Conclusions: Patients therapeutically anticoagulated with warfarin can be treated on an ambulatory basis, without interruption of their warfarin regimen provided appropriate local measures are used.G Carter, AN Goss, JV Lloyd, R Tocchett

    Photonic quantum technologies

    Full text link
    The first quantum technology, which harnesses uniquely quantum mechanical effects for its core operation, has arrived in the form of commercially available quantum key distribution systems that achieve enhanced security by encoding information in photons such that information gained by an eavesdropper can be detected. Anticipated future quantum technologies include large-scale secure networks, enhanced measurement and lithography, and quantum information processors, promising exponentially greater computation power for particular tasks. Photonics is destined for a central role in such technologies owing to the need for high-speed transmission and the outstanding low-noise properties of photons. These technologies may use single photons or quantum states of bright laser beams, or both, and will undoubtably apply and drive state-of-the-art developments in photonics

    Integrated photonic quantum gates for polarization qubits

    Get PDF
    Integrated photonic circuits have a strong potential to perform quantum information processing. Indeed, the ability to manipulate quantum states of light by integrated devices may open new perspectives both for fundamental tests of quantum mechanics and for novel technological applications. However, the technology for handling polarization encoded qubits, the most commonly adopted approach, is still missing in quantum optical circuits. Here we demonstrate the first integrated photonic Controlled-NOT (CNOT) gate for polarization encoded qubits. This result has been enabled by the integration, based on femtosecond laser waveguide writing, of partially polarizing beam splitters on a glass chip. We characterize the logical truth table of the quantum gate demonstrating its high fidelity to the expected one. In addition, we show the ability of this gate to transform separable states into entangled ones and vice versa. Finally, the full accessibility of our device is exploited to carry out a complete characterization of the CNOT gate through a quantum process tomography.Comment: 6 pages, 4 figure

    Ocean impact on decadal Atlantic climate variability revealed by sea-level observations

    Get PDF
    Decadal variability is a notable feature of the Atlantic Ocean and the climate of the regions it influences. Prominently, this is manifested in the Atlantic Multidecadal Oscillation (AMO) in sea surface temperatures. Positive (negative) phases of the AMO coincide with warmer (colder) North Atlantic sea surface temperatures. The AMO is linked with decadal climate fluctuations, such as Indian and Sahel rainfall1, European summer precipitation2, Atlantic hurricanes3 and variations in global temperatures4. It is widely believed that ocean circulation drives the phase changes of the AMO by controlling ocean heat content5. However, there are no direct observations of ocean circulation of sufficient length to support this, leading to questions about whether the AMO is controlled from another source6. Here we provide observational evidence of the widely hypothesized link between ocean circulation and the AMO. We take a new approach, using sea level along the east coast of the United States to estimate ocean circulation on decadal timescales. We show that ocean circulation responds to the first mode of Atlantic atmospheric forcing, the North Atlantic Oscillation, through circulation changes between the subtropical and subpolar gyres—the intergyre region7. These circulation changes affect the decadal evolution of North Atlantic heat content and, consequently, the phases of the AMO. The Atlantic overturning circulation is declining8 and the AMO is moving to a negative phase. This may offer a brief respite from the persistent rise of global temperatures4, but in the coupled system we describe, there are compensating effects. In this case, the negative AMO is associated with a continued acceleration of sea-level rise along the northeast coast of the United States9, 10
    corecore