99 research outputs found
The host galaxies of z=7 quasars: predictions from the BlueTides simulation
We examine the properties of the host galaxies of quasars using the
large volume, cosmological hydrodynamical simulation BlueTides. We find that
the 10 most massive black holes and the 191 quasars in the simulation (with
) are hosted by massive galaxies with
stellar masses , and , which have
large star formation rates, of and
, respectively. The hosts of the
most massive black holes and quasars in BlueTides are generally
bulge-dominated, with bulge-to-total mass ratio , however
their morphologies are not biased relative to the overall galaxy sample.
We find that the hosts of the most massive black holes and quasars are
significantly more compact, with half-mass radii kpc and kpc respectively; galaxies
with similar masses and luminosities have a wider range of sizes with a larger
median value, kpc. We make mock James
Webb Space Telescope (JWST) images of these quasars and their host galaxies. We
find that distinguishing the host from the quasar emission will be possible but
still challenging with JWST, due to the small sizes of quasar hosts. We find
that quasar samples are biased tracers of the intrinsic black hole--stellar
mass relation, following a relation that is 0.2 dex higher than that of the
full galaxy sample. Finally, we find that the most massive black holes and
quasars are more likely to be found in denser environments than the typical
black hole, indicating that minor mergers
play at least some role in growing black holes in the early Universe.Comment: 19 pages, 20 figures. Accepted for publication in MNRA
Lombard effect onset times reveal the speed of vocal plasticity in a songbird
Animals that use vocal signals to communicate often compensate for interference and masking from background noise by raising the amplitude of their vocalisations. This response has been termed the Lombard effect. However, despite more than a century of research, little is known how quickly animals can adjust the amplitude of their vocalisations after the onset of noise. The ability to respond quickly to increases in noise levels would allow animals to avoid signal masking and ensure their calls continue to be heard, even if they are interrupted by sudden bursts of high-amplitude noise. We tested how quickly singing male canaries (Serinus canaria) exhibit the Lombard effect by exposing them to short playbacks of white noise and measuring the speed of their responses. We show that canaries exhibit the Lombard effect in as little as 300 ms after the onset of noise and are also able to increase the amplitude of their songs mid-song and mid-phrase without pausing. Our results demonstrate high vocal plasticity in this species and suggest that birds are able to adjust the amplitude of their vocalisations very rapidly to ensure they can still be heard even during sudden changes in background noise levels
Observing the host galaxies of high-redshift quasars with JWST: predictions from the BLUETIDES simulation
The bright emission from high-redshift quasars completely conceals their host galaxies in the rest-frame ultraviolet/optical, with detection of the hosts in these wavelengths eluding even the Hubble Space Telescope (HST) using detailed point spread function (PSF) modelling techniques. In this study, we produce mock images of a sample of z = 7 quasars extracted from the BLUETIDES simulation, and apply Markov chain Monte Carlo-based PSF modelling to determine the detectability of their host galaxies with the James Webb Space Telescope (JWST). While no statistically significant detections are made with HST, we predict that at the same wavelengths and exposure times JWST NIRCam imaging will detect ∼ 50 per cent of quasar host galaxies. We investigate various observational strategies, and find that NIRCam wide-band imaging in the long-wavelength filters results in the highest fraction of successful quasar host detections, detecting > 80 per cent of the hosts of bright quasars in exposure times of 5 ks. Exposure times of > 5 ks are required to detect the majority of host galaxies in the NIRCam wide-band filters, however, even 10 ks exposures with MIRI result in < 30 per cent successful host detections. We find no significant trends between galaxy properties and their detectability. The PSF modelling can accurately recover the host magnitudes, radii, and spatial distribution of the larger scale emission, when accounting for the central core being contaminated by residual quasar flux. Care should be made when interpreting the host properties measured using PSF modelling
Taking It to the Extreme:The Effect of Coalition Cabinets on Foreign Policy
Institutional constraints have been offered by some scholars as an explanation for why multiparty coalitions should be more peaceful than single-party cabinets. Yet others see the same institutional setting as a prescription for more aggressive behavior. Recent research has investigated these conflicting expectations, but with mixed results. We examine the theoretical bases for these alternative expectations about the effects of coalition politics on foreign policy. We find that previous research is limited theoretically by confounding institutional effects with policy positions, and empirically by analyzing only international conflict data. We address these limitations by examining cases of foreign policy behavior using the World Event/Interaction Survey (WEIS) dataset. Consistent with our observation that institutional constraints have been confounded with policy positions, we find that coalitions are neither more aggressive nor more peaceful, but do engage in more extreme foreign policy behaviors. These findings are discussed with regard to various perspectives on the role of institutions in shaping foreign policy behavior.</p
US hegemony and the origins of Japanese nuclear power : the politics of consent
This paper deploys the Gramscian concepts of hegemony and consent in order to explore the process whereby nuclear power was brought to Japan. The core argument is that nuclear power was brought to Japan as a consequence of US hegemony. Rather than a simple manifestation of one state exerting material ‘power over' another, bringing nuclear power to Japan involved a series of compromises worked out within and between state and civil society in both Japan and the USA. Ideologies of nationalism, imperialism and modernity underpinned the process, coalescing in post-war debates about the future trajectory of Japanese society, Japan's Cold War alliance with the USA and the role of nuclear power in both. Consent to nuclear power was secured through the generation of a psychological state in the public mind combining the fear of nuclear attack and the hope of unlimited consumption in a nuclear-fuelled post-modern world
Modulating RNA structure and catalysis: lessons from small cleaving ribozymes
RNA is a key molecule in life, and comprehending its structure/function relationships is a crucial step towards a more complete understanding of molecular biology. Even though most of the information required for their correct folding is contained in their primary sequences, we are as yet unable to accurately predict both the folding pathways and active tertiary structures of RNA species. Ribozymes are interesting molecules to study when addressing these questions because any modifications in their structures are often reflected in their catalytic properties. The recent progress in the study of the structures, the folding pathways and the modulation of the small ribozymes derived from natural, self-cleaving, RNA motifs have significantly contributed to today’s knowledge in the field
Genetic mechanisms of critical illness in COVID-19.
Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 × 10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
- …