930 research outputs found
Feature Improvement and Cost Reduction of Baitcasting Fishing Reels for Emerging Markets
Baitcasting fishing reels are a challenging product to sell to new users in emerging markets. Their complex and less-than-intuitive design make them poor candidates for a novice fisherman selecting his or her first fishing reel. Based upon manufacturer constraints and design requirements, our team lowered the price point and improved the usability of the Okuma Cerros baitcasting fishing reel to make it more appealing to a wider range of consumers, especially in emerging markets. This project resulted in a three-phase redesign: reducing cost via alternative materials and replacing bearings with bushings; prototyping a simplified cast control system; and proposing an improved user interface
West Nile Virus Detection in American Crows
A dipstick immunochromatographic assay used for West Nile virus (WNV) detection in mosquitoes was investigated for application to testing of fecal, saliva, and tissue samples from dead American Crows (Corvus brachyrhynchos). Results suggest that VecTest may be an efficient method for WNV detection in field-collected, dead American Crows, although confirmation of results and further investigation are warranted
West Nile Virus Detection in American Crows
A dipstick immunochromatographic assay used for West Nile virus (WNV) detection in mosquitoes was investigated for application to testing of fecal, saliva, and tissue samples from dead American Crows (Corvus brachyrhynchos). Results suggest that VecTest may be an efficient method for WNV detection in field-collected, dead American Crows, although confirmation of results and further investigation are warranted
Joint analysis of X-ray and Sunyaev Zel'dovich observations of galaxy clusters using an analytic model of the intra-cluster medium
We perform a joint analysis of X-ray and Sunyaev Zel'dovich (SZ) effect data
using an analytic model that describes the gas properties of galaxy clusters.
The joint analysis allows the measurement of the cluster gas mass fraction
profile and Hubble constant independent of cosmological parameters. Weak
cosmological priors are used to calculate the overdensity radius within which
the gas mass fractions are reported. Such an analysis can provide direct
constraints on the evolution of the cluster gas mass fraction with redshift. We
validate the model and the joint analysis on high signal-to-noise data from the
Chandra X-ray Observatory and the Sunyaev-Zel'dovich Array for two clusters,
Abell 2631 and Abell 2204.Comment: ApJ in pres
SLIM Ultrahigh Resolution Ion Mobility Spectrometry Separations of Isotopologues and Isotopomers Reveal Mobility Shifts due to Mass Distribution Changes
We report on separations of ion isotopologues and isotopomers using ultrahigh-resolution traveling wave-based Structures for Lossless Ion Manipulations with serpentine ultralong path and extended routing ion mobility spectrometry coupled to mass spectrometry (SLIM SUPER IMS-MS). Mobility separations of ions from the naturally occurring ion isotopic envelopes (e.g., [M], [M+1], [M+2], ... ions) showed the first and second isotopic peaks (i.e., [M+1] and [M+2]) for various tetraalkylammonium ions could be resolved from their respective monoisotopic ion peak ([M]) after SLIM SUPER IMS with resolving powers of ∼400–600. Similar separations were obtained for other compounds (e.g., tetrapeptide ions). Greater separation was obtained using argon versus helium drift gas, as expected from the greater reduced mass contribution to ion mobility described by the Mason–Schamp relationship. To more directly explore the role of isotopic substitutions, we studied a mixture of specific isotopically substituted (15N, 13C, and 2H) protonated arginine isotopologues. While the separations in nitrogen were primarily due to their reduced mass differences, similar to the naturally occurring isotopologues, their separations in helium, where higher resolving powers could also be achieved, revealed distinct additional relative mobility shifts. These shifts appeared correlated, after correction for the reduced mass contribution, with changes in the ion center of mass due to the different locations of heavy atom substitutions. The origin of these apparent mass distribution-induced mobility shifts was then further explored using a mixture of Iodoacetyl Tandem Mass Tag (iodoTMT) isotopomers (i.e., each having the same exact mass, but with different isotopic substitution sites). Again, the observed mobility shifts appeared correlated with changes in the ion center of mass leading to multiple monoisotopic mobilities being observed for some isotopomers (up to a ∼0.04% difference in mobility). These mobility shifts thus appear to reflect details of the ion structure, derived from the changes due to ion rotation impacting collision frequency or momentum transfer, and highlight the potential for new approaches for ion structural characterization
A Mismatch in the Ultraviolet Spectra between Low-Redshift and Intermediate-Redshift Type Ia Supernovae as a Possible Systematic Uncertainty for Supernova Cosmology
We present Keck high-quality rest-frame ultraviolet (UV) through optical
spectra of 21 Type Ia supernovae (SNe Ia) in the redshift range 0.11 < z < 0.37
and a mean redshift of 0.22 that were discovered during the Sloan Digital Sky
Survey-II (SDSS-II) SN Survey. Using the broad-band photometry of the SDSS
survey, we are able to reconstruct the SN host-galaxy spectral energy
distributions (SEDs), allowing for a correction for the host-galaxy
contamination in the SN Ia spectra. Comparison of composite spectra constructed
from a subsample of 17 high-quality spectra to those created from a
low-redshift sample with otherwise similar properties shows that the Keck/SDSS
SNe Ia have, on average, extremely similar rest-frame optical spectra but show
a UV flux excess. This observation is confirmed by comparing synthesized
broad-band colors of the individual spectra, showing a difference in mean
colors at the 2.4 - 4.4 sigma level for various UV colors. We further see a
slight difference in the UV spectral shape between SNe with low-mass and
high-mass host galaxies. Additionally, we detect a relationship between the
flux ratio at 2770 and 2900 A and peak luminosity that differs from that
observed at low redshift. We find that changing the UV SED of an SN Ia within
the observed dispersion can change the inferred distance moduli by ~0.1 mag.
This effect only occurs when the data probe the rest-frame UV. We suggest that
this discrepancy could be due to differences in the host-galaxy population of
the two SN samples or to small-sample statistics.Comment: 28 pages, 21 figures, accepted by AJ, spectra are available at
http://www.cfa.harvard.edu/~rfoley/data
Real-world tyrosine kinase inhibitor treatment pathways, monitoring patterns and responses in patients with chronic myeloid leukaemia in the United Kingdom: the UK TARGET CML study.
Management of chronic myeloid leukaemia (CML) has recently undergone dramatic changes, prompting the European LeukemiaNet (ELN) to issue recommendations in 2013; however, it remains unclear whether real-world CML management is consistent with these goals. We report results of UK TARGET CML, a retrospective observational study of 257 patients with chronic-phase CML who had been prescribed a first-line TKI between 2013 and 2017, most of whom received first-line imatinib (n = 203). Although 44% of patients required ≥1 change of TKI, these real-world data revealed that molecular assessments were frequently missed, 23% of patients with ELN-defined treatment failure did not switch TKI, and kinase domain mutation analysis was performed in only 49% of patients who switched TKI for resistance. Major molecular response (MMR; BCR-ABL1IS ≤0·1%) and deep molecular response (DMR; BCR-ABL1IS ≤0·01%) were observed in 50% and 29%, respectively, of patients treated with first-line imatinib, and 63% and 54%, respectively, receiving a second-generation TKI first line. MMR and DMR were also observed in 77% and 44% of evaluable patients with ≥13 months follow-up, receiving a second-generation TKI second line. We found little evidence that cardiovascular risk factors were considered during TKI management. These findings highlight key areas for improvement in providing optimal care to patients with CML
Recommended from our members
Inflation and Dark Energy from spectroscopy at z > 2
The expansion of the Universe is understood to have accelerated during two
epochs: in its very first moments during a period of Inflation and much more
recently, at z < 1, when Dark Energy is hypothesized to drive cosmic
acceleration. The undiscovered mechanisms behind these two epochs represent
some of the most important open problems in fundamental physics. The large
cosmological volume at 2 < z < 5, together with the ability to efficiently
target high- galaxies with known techniques, enables large gains in the
study of Inflation and Dark Energy. A future spectroscopic survey can test the
Gaussianity of the initial conditions up to a factor of ~50 better than our
current bounds, crossing the crucial theoretical threshold of
of order unity that separates single field and
multi-field models. Simultaneously, it can measure the fraction of Dark Energy
at the percent level up to , thus serving as an unprecedented test of
the standard model and opening up a tremendous discovery space
First-year Sloan Digital Sky Survey-II (SDSS-II) Supernova Results: Hubble Diagram and Cosmological Parameters
We present measurements of the Hubble diagram for 103 Type Ia supernovae
(SNe) with redshifts 0.04 < z < 0.42, discovered during the first season (Fall
2005) of the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. These data
fill in the redshift "desert" between low- and high-redshift SN Ia surveys. We
combine the SDSS-II measurements with new distance estimates for published SN
data from the ESSENCE survey, the Supernova Legacy Survey, the Hubble Space
Telescope, and a compilation of nearby SN Ia measurements. Combining the SN
Hubble diagram with measurements of Baryon Acoustic Oscillations from the SDSS
Luminous Red Galaxy sample and with CMB temperature anisotropy measurements
from WMAP, we estimate the cosmological parameters w and Omega_M, assuming a
spatially flat cosmological model (FwCDM) with constant dark energy equation of
state parameter, w. For the FwCDM model and the combined sample of 288 SNe Ia,
we find w = -0.76 +- 0.07(stat) +- 0.11(syst), Omega_M = 0.306 +- 0.019(stat)
+- 0.023(syst) using MLCS2k2 and w = -0.96 +- 0.06(stat) +- 0.12(syst), Omega_M
= 0.265 +- 0.016(stat) +- 0.025(syst) using the SALT-II fitter. We trace the
discrepancy between these results to a difference in the rest-frame UV model
combined with a different luminosity correction from color variations; these
differences mostly affect the distance estimates for the SNLS and HST
supernovae. We present detailed discussions of systematic errors for both
light-curve methods and find that they both show data-model discrepancies in
rest-frame -band. For the SALT-II approach, we also see strong evidence for
redshift-dependence of the color-luminosity parameter (beta). Restricting the
analysis to the 136 SNe Ia in the Nearby+SDSS-II samples, we find much better
agreement between the two analysis methods but with larger uncertainties.Comment: Accepted for publication by ApJ
- …